NON-SMOOTHNESS OF EVENT HORIZONS OF ROBINSON-TRAUTMAN BLACK-HOLES

被引:46
作者
CHRUSCIEL, PT
SINGLETON, DB
机构
[1] Australian National University, Canberra, 2601, A.C.T.
[2] Institute of Mathematics, Polish Academy of Sciences, Warsaw, 2601, A.C.T.
关键词
D O I
10.1007/BF02099531
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that generic "small data" Robinson-Trautman space-times cannot be C123 extended beyond the "r = 2m Schwarzschild-like" event horizon. This implies that an observer living in such a space-time can determine by local measurements whether or not he has crossed the event-horizon of the black-hole.
引用
收藏
页码:137 / 162
页数:26
相关论文
共 25 条
[1]  
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS, P331
[2]  
BICAK J, 1989, PHYS REV D, V40, P1872
[3]  
BOURGUIGNON JP, 1975, COMPOS MATH, V30, P1
[4]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[6]   A MATHEMATICAL-THEORY OF GRAVITATIONAL COLLAPSE [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (04) :613-647
[7]   THE STRUCTURE AND UNIQUENESS OF GENERALIZED SOLUTIONS OF THE SPHERICALLY SYMMETRICAL EINSTEIN-SCALAR EQUATIONS [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (04) :591-611
[8]   THE PROBLEM OF A SELF-GRAVITATING SCALAR FIELD [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (03) :337-361
[9]  
CHRISTODOULOU D, 1986, COMMUN MATH PHYS, V106, P587, DOI 10.1007/BF01463398
[10]  
CHRISTODOULOU D, 1989, GLOBAL NONLINEAR STA