A DUALITY APPROACH TO MINIMAX RESULTS FOR QUASI-SADDLE FUNCTIONS IN FINITE DIMENSIONS

被引:4
作者
PASSY, U [1 ]
PRISMAN, EZ [1 ]
机构
[1] YORK UNIV,FAC ADM STUDIES,N YORK M3J 1P3,ONTARIO,CANADA
关键词
QUASI-CONVEX FUNCTION; SADDLE POINT THEOREM; DUALITY; LAGRANGIANS;
D O I
10.1007/BF01581192
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we show how saddle point theorems for a quasiconvex-quasiconcave function can be derived from duality theory. A symmetric duality framework that provides the machinery for deriving saddle point theorems is presented. Generating the theorems, via the framework, provides a deeper understanding of assumptions employed in existing theorems which do not utilize duality theory.
引用
收藏
页码:81 / 98
页数:18
相关论文
共 24 条
[1]  
CROUZEIX JP, 1981, GENERALIZED CONCAVIT, P207
[2]   PHI-CONVEXITY IN EXTREMAL PROBLEMS [J].
DOLECKI, S ;
KURCYUSZ, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (02) :277-300
[3]  
FENCHEL W, 1951, UNPUB CONVEX CONES S
[4]   GLOBAL SADDLE-POINT DUALITY FOR QUASI-CONCAVE PROGRAMS .2. [J].
FLACHS, J .
MATHEMATICAL PROGRAMMING, 1982, 24 (03) :326-345
[5]  
FLACHS J, 1979, MATH PROGRAM, V16, P340
[6]   SURROGATE MATHEMATICAL PROGRAMMING [J].
GREENBERG, HJ ;
PIERSKALLA, WP .
OPERATIONS RESEARCH, 1970, 18 (05) :924-+
[7]  
GREENBERG HJ, 1977, OPER RES, V21, P162
[8]  
Greenberg HP., 1973, CAHIERS CTR ETUDES R, V15, P437
[9]  
LEGAZ JEM, 1983, Z OPER RES, V27, P257
[10]   QUASI-CONVEX PROGRAMMING [J].
LUENBERGER, DG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (05) :1090-+