DISTRIBUTION SENSITIVITY FOR CERTAIN CLASSES OF CHANCE-CONSTRAINED MODELS WITH APPLICATION TO POWER DISPATCH

被引:14
作者
ROMISCH, W
SCHULTZ, R
机构
[1] Sektion Mathematik, Humboldt-Universität, Berlin
关键词
PARAMETRIC OPTIMIZATION; CHANCE-CONSTRAINED STOCHASTIC PROGRAMMING; SENSITIVITY ANALYSIS; OPTIMAL POWER DISPATCH;
D O I
10.1007/BF00941404
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Using results from parametric optimization, we derive for chance-constrained stochastic programs quantitative stability properties for locally optimal values and sets of local minimizers when the underlying probability distribution is subjected to perturbations in a metric space of probability measures. Emphasis is placed on verifiable sufficient conditions for the constraint-set mapping to fulfill a Lipschitz property which is essential for the stability results. Both convex and nonconvex problems are investigated. For a chance-constrained model of power dispatch, where the power demand enters as a random vector with incompletely known probability distribution, we discuss consequences of our general results for the stability of optimal generation costs and optimal generation policies.
引用
收藏
页码:569 / 588
页数:20
相关论文
共 38 条
[1]  
Bank B., 1982, NONLINEAR PARAMETRIC
[2]  
BHATTACHARYA R. N., 1976, NORMAL APPROXIMATION
[3]  
Borell C., 1975, PERIOD MATH HUNG, V6, P111, DOI DOI 10.1007/BF02018814
[4]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[5]  
DEAK I, 1982, OPERATIONS RES PROGR, P103
[6]  
DUPACOVA J, 1986, WP8640 IIASA WORK PA
[7]  
DUPACOVA J, 1986, STOCHASTIC OPTIMIZAT, P314
[8]  
Fiacco A. V., 1983, INTRO SENSITIVITY ST
[9]   EMPIRICAL PROCESSES - SURVEY OF RESULTS FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM-VARIABLES [J].
GAENSSLER, P ;
STUTE, W .
ANNALS OF PROBABILITY, 1979, 7 (02) :193-243
[10]  
GONZALES R, 1986, FERMAT DAYS, V85, P135