QUANTUM-MECHANICS AND POLYNOMIALS OF A DISCRETE VARIABLE

被引:24
作者
FLOREANINI, R [1 ]
LETOURNEUX, J [1 ]
VINET, L [1 ]
机构
[1] UNIV MONTREAL,PHYS NUCL LAB,MONTREAL H3C 3J7,QUEBEC,CANADA
关键词
D O I
10.1006/aphy.1993.1072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recursive Lanczos method for solving the Schrödinger equation is applied to systems with dynamical symmetries and given a group theoretical formulation. An algebraic interpretation of various classical orthogonal polynomials of a discrete variable is obtained in this quantum mechanical context. © 1993 Academic Press, Inc.
引用
收藏
页码:331 / 349
页数:19
相关论文
共 19 条
  • [1] ASKEY R, 1992, IN PRESS 15 P WORKSH
  • [2] ASKEY R, 1985, MEM AM MATH SOC, V319
  • [3] ATAKISHIYEV NM, 1985, ANN PHYS-BERLIN, V42, P25, DOI 10.1002/andp.19854970104
  • [4] A UNITARY REPRESENTATION OF SL(2,R)
    BACRY, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (09) : 2061 - 2077
  • [5] THE ATTRACTIVE COULOMB POTENTIAL POLYNOMIALS
    BANK, E
    ISMAIL, MEH
    [J]. CONSTRUCTIVE APPROXIMATION, 1985, 1 (02) : 103 - 119
  • [6] BARUT AO, 1972, DYNAMICAL GROUPS GEN
  • [7] Chihara TS., 1978, INTRO ORTHOGONAL POL
  • [8] Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
  • [9] HAYDOCK R, 1990, ORTHOGONAL POLYNOMIA
  • [10] HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215