DYNAMIC INTERACTION BETWEEN CARDIAC MYOSIN ISOFORMS MODIFIES VELOCITY OF ACTOMYOSIN SLIDING IN-VITRO

被引:55
作者
SATA, M
SUGIURA, S
YAMASHITA, H
MOMOMURA, S
SERIZAWA, T
机构
[1] Second Dept. of Internal Medicine, Faculty of Medicine, University of Tokyo
[2] Second Dept. of Internal Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113
关键词
MYOSIN; ISOFORM; ACTIN; HETEROGENEITY; IN-VITRO MOTILITY ASSAY;
D O I
10.1161/01.RES.73.4.696
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
To study the functional significance of cardiac isomyosin heterogeneity, active sliding of actin-myosin was studied using two different types of in vitro motility assay systems: (1) a sliding actin filament assay, in which fluorescently labeled actin filaments were made to slide on a myosin layer attached to a glass coverslip, and (2) a myosin-coated bead assay, in which myosin-coated latex beads were made to slide on actin cables of an alga. Two different isomyosins were obtained from 3-week-old (VI) and hypothyroid (V3) rat hearts and were mixed to form solutions with various mixing ratios [V1/(V1 + V3)]. For these myosin mixtures, both ATPase activity and sliding velocity of actin-myosin were determined. As the relative content of V1 increased, both ATPase activity and velocity increased. However, in contrast to the linear relation between the mixing ratio and ATPase activity, the relation between the mixing ratio and sliding velocity was sigmoid, suggesting the existence of mechanical interaction between different isomyosins. To clarify the nature of this interaction, sliding velocity was measured for mixtures of V1 and p-N,N'-phenylene-dimaleimide-treated V1 myosin (pPDM-M). A convex relation was observed between the relative content of pPDM-M and velocity. Because pPDM-M is known to form a noncycling and weakly bound crossbridge with actin, it is expected to exert a constant internal load on V1, in contrast to the actively cycling V3. In conclusion, in actomyosin sliding, different isomyosins mechanically interact when they coexist. The interaction may be a dynamic one that cannot be explained by a simple load effect.
引用
收藏
页码:696 / 704
页数:9
相关论文
共 47 条
[1]  
ALPERT NR, 1983, PERSPECTIVES CARDIOV, P619
[2]   COMPARATIVE STUDIES OF ATRIAL AND VENTRICULAR MYOSIN FROM NORMAL, THYROTOXIC, AND THYROIDECTOMIZED RABBITS [J].
BANERJEE, SK .
CIRCULATION RESEARCH, 1983, 52 (02) :131-136
[3]  
BURKE M, 1980, J BIOL CHEM, V255, P8385
[4]   EFFECT OF NUCLEOTIDE BINDING ON PROXIMITY OF ESSENTIAL SULFHYDRYL-GROUPS OF MYOSIN - CHEMICAL PROBING OF MOVEMENT OF RESIDUES DURING CONFORMATIONAL TRANSITIONS [J].
BURKE, M ;
REISLER, E .
BIOCHEMISTRY, 1977, 16 (25) :5559-5563
[5]   SHORTENING VELOCITY AND MYOSIN AND MYOFIBRILLAR ATPASE ACTIVITY RELATED TO MYOSIN ISOENZYME COMPOSITION DURING POSTNATAL-DEVELOPMENT IN RAT MYOCARDIUM [J].
CAPPELLI, V ;
BOTTINELLI, R ;
POGGESI, C ;
MOGGIO, R ;
REGGIANI, C .
CIRCULATION RESEARCH, 1989, 65 (02) :446-457
[6]   CROSSLINKED MYOSIN SUBFRAGMENT-1 - A STABLE ANALOG OF THE SUBFRAGMENT-1.ATP COMPLEX [J].
CHALOVICH, JM ;
GREENE, LE ;
EISENBERG, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (16) :4909-4913
[7]  
CHIZZONITE RA, 1982, J BIOL CHEM, V257, P2056
[8]   ALTERATIONS OF MECHANICAL PARAMETERS IN CHEMICALLY SKINNED PREPARATIONS OF RAT MYOCARDIUM AS A FUNCTION OF ISOENZYME PATTERN OF MYOSIN [J].
EBRECHT, G ;
RUPP, H ;
JACOB, R .
BASIC RESEARCH IN CARDIOLOGY, 1982, 77 (02) :220-234
[9]   DECREASED CONTRACTILE EFFICIENCY AND INCREASED NONMECHANICAL ENERGY-COST IN HYPERTHYROID RABBIT HEART - RELATION BETWEEN O-2 CONSUMPTION AND SYSTOLIC PRESSURE-VOLUME AREA OR FORCE-TIME INTEGRAL [J].
GOTO, Y ;
SLINKER, BK ;
LEWINTER, MM .
CIRCULATION RESEARCH, 1990, 66 (04) :999-1011
[10]   MECHANOCHEMICAL COUPLING IN ACTOMYOSIN ENERGY TRANSDUCTION STUDIED BY INVITRO MOVEMENT ASSAY [J].
HARADA, Y ;
SAKURADA, K ;
AOKI, T ;
THOMAS, DD ;
YANAGIDA, T .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 216 (01) :49-68