Voltage-gated Ca2+ currents were investigated in a subpopulation of dorsal root ganglion neurons (large diameter, neurofilament-positive) acutely isolated from 13-day-old mouse embryos and recorded using the whole-cell patch-clamp technique. Low- and high-voltage-activated calcium currents were recorded. These currents could be identified and separated by their distinct (i) threshold of activation, (ii) ability to run-up during the early phase of recording and (iii) decay kinetics using Ba2+ instead of Ca2+ as the charge carrier. Among high-voltage-activated currents, L-, N- and P-type Ca2+ currents were identified by their sensitivity to, respectively, the dihydropyridine agonist Bay K 8644 (5 mu M) and antagonist nitrendipine (3 mu M), omega-conotoxin GVIA (3 mu M) and omega-agatoxin IVA (30 nM). In the combined presence of nitrendipine (3 mu M), omega-conotoxin GVIA (3 mu M) and omega-agatoxin IVA (30 nM), two additional high-voltage-activated components were detected. One, blocked by 500 nM omega-conotoxin MVIIC and 1 mu M omega-agatoxin IVA, had properties similar to those of the Q-type Ca2+ current first reported in cerebellar granule cells. The other, defined by its resistance to saturating concentrations of all the blockers mentioned above applied in combination, resembles the R-type Ca2+ current also described in cerebellar granule cells. In conclusion, embryonic sensory neurons appear to express a large repertoire of voltage-activated Ca2+ currents with distinct pharmacological properties. This diversity suggests a great variety of pathways for Ca2+ signaling which may support different functions during development.