The property of intensive Ca-45(2+) uptake by A-431 human epidermoidal carcinoma cells was indicated to be an influx, not binding to the cell surface, since the two apparent dissociation constants (K(d)) between Ca-45(2+) and cells were almost the same when measured in either the presence or absence of 1 mM [ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA); these constants were approximately 5-10 x 10(-6) and 1 x 10(-4) M, respectively, which are much higher than the chelating constant of EGTA for Ca2+ (approximately 10(-11) M). Furthermore, addition of A23187, a calcium ionophore, rapidly released the Ca-45(2+) incorporated into cells at both 37-degrees-C and 0-degrees-C. The Ca-45(2+) associated with the cells was slowly released or exchanged when cells were incubated in medium depleted of Ca2+, or in that containing 1 mM non-radioactive Ca2+. The ability of A-431 cells to respond to extracellular ATP by elevating their level of intracellular calcium ions, as well as by producing inositol trisphosphate (InsP3), was suppressed in cells depleted of cellular calcium. These data suggest that calcium ions are extensively incorporated or exchanged with those outside the cells, maintained as stored calcium, and involved in production of InsP3, when A-431 cells are stimulated by ATP to trigger the signal transduction system.