THE SHAPE OF NONAXISYMMETRIC DROPS ON INCLINED PLANAR SURFACES

被引:49
作者
ROTENBERG, Y
BORUVKA, L
NEUMANN, AW
机构
[1] Univ of Toronto, Dep of Mechanical, Engineering, Toronto, Ont, Can, Univ of Toronto, Dep of Mechanical Engineering, Toronto, Ont, Can
关键词
FLUID MECHANICS - Mathematical Models - SURFACES - Transport Properties;
D O I
10.1016/0021-9797(84)90245-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new solution for the shape of a drop sliding on a planar solid surface is presented. The phenomenon of dynamic contact angles is used as the boundary condition for the numerical solution. Next the authors develop an expression for the free energy in the spherical coordinate system and formulate the problem for horizontal planar solids as the point of departure for the subsequent formulation for inclined planar surfaces.
引用
收藏
页码:424 / 434
页数:11
相关论文
共 28 条
[1]  
Bashforth F., 1892, ATTEMPT TEST THEORIE
[2]   SLIDING OF DROPS FROM SURFACES OF DIFFERENT ROUGHNESSES [J].
BIKERMAN, JJ .
JOURNAL OF COLLOID SCIENCE, 1950, 5 (04) :349-359
[3]   STATIC DROP ON AN INCLINED PLATE - ANALYSIS BY THE FINITE-ELEMENT METHOD [J].
BROWN, RA ;
ORR, FM ;
SCRIVEN, LE .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1980, 73 (01) :76-87
[4]   DYNAMIC CONTACT ANGLES ON SMOOTH AND ROUGH SURFACES [J].
CAIN, JB ;
FRANCIS, DW ;
VENTER, RD ;
NEUMANN, AW .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1983, 94 (01) :123-130
[5]  
de Boor C., 1972, Journal of Approximation Theory, V6, P50, DOI 10.1016/0021-9045(72)90080-9
[6]  
Dettre R., 1964, CONTACT ANGLE WETTAB, V43, P112
[7]   SPREADING OF LIQUIDS ON SOLID-SURFACES - STATIC AND DYNAMIC CONTACT LINES [J].
DUSSAN, EB .
ANNUAL REVIEW OF FLUID MECHANICS, 1979, 11 :371-400
[8]  
EICK JD, 1975, J COLLOID INTERFACE, V52, P235
[9]   DYNAMIC CONTACT ANGLES .1. EFFECT OF IMPRESSED MOTION [J].
ELLIOTT, GEP ;
RIDDIFORD, AC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1967, 23 (03) :389-+
[10]   ON THE CALCULATION OF SURFACE TENSION FROM MEASUREMENTS OF PENDANT DROPS [J].
FORDHAM, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1948, 194 (1036) :1-16