BIFURCATIONS, PERIOD DOUBLINGS AND CHAOS IN CLARINET-LIKE SYSTEMS

被引:51
作者
MAGANZA, C
CAUSSE, R
LALOE, F
机构
[1] ECOLE NORMALE SUPER,SPECT HERTZIENNE LAB,F-75231 PARIS 05,FRANCE
[2] UNIV MAINE,ACOUST LAB,CNRS,UNITE 1101,F-72017 LE MANS,FRANCE
来源
EUROPHYSICS LETTERS | 1986年 / 1卷 / 06期
关键词
HYDRODYNAMICS - MATHEMATICAL TRANSFORMATIONS - RESONATORS; CAVITY;
D O I
10.1209/0295-5075/1/6/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Wind instruments provide interesting hydrodynamical systems where nonlinearities are important but well localized. A simple analysis shows that these systems should undergo Feigenbaum-type route to chaos, with a cascade of period doublings. Experiments have been performed with an acoustical resonator and an 'artificial' excitation (nonlinearities controlled by either analogic or digital devices); they have confirmed these predictions.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 16 条
[2]   ON THE MATHEMATICAL THEORY OF WOODWIND FINGER HOLES [J].
BENADE, AH .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1960, 32 (12) :1591-1608
[3]   SOUND PRODUCTION IN WIND INSTRUMENTS [J].
BENADE, AH ;
GANS, DJ .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1968, 155 (A1) :247-&
[4]  
BENADE AH, PREPRINT
[5]  
Benade AH, 1976, FOUNDAMENTALS MUSICA
[6]  
BERGE P, 1985, ORDRE CHAOS
[7]  
Bouasse Henri, 1929, INSTRUMENTS VENT
[8]   EFFECT OF MATERIAL ON FLUTE TONE QUALITY [J].
COLTMAN, JW .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1971, 49 (02) :520-&
[9]   UNIVERSAL BEHAVIOR IN NON-LINEAR SYSTEMS [J].
FEIGENBAUM, MJ .
PHYSICA D, 1983, 7 (1-3) :16-39
[10]  
Guckenheimer J., 1984, APPL MATH SCI, V51, P947, DOI 10.1115/1.3167759