TRAVELING FRONTS IN CYLINDERS

被引:297
作者
BERESTYCKI, H
NIRENBERG, L
机构
[1] ECOLE NORM SUPER,DMI,F-75230 PARIS 05,FRANCE
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1992年 / 9卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0294-1449(16)30229-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with travelling front solutions of semilinear parabolic equations in an infinite cylindrical domain SIGMA = R x omega where omega subset-of R(n-1) is a bounded domain. We write for x in SIGMA, x = (x1, y), with gamma is-an-element-of omega. The problems we consider are of the following type [GRAPHICS] where the unknowns are the parameter c is-an-element-of R and the function u. The function alpha is-an-element-of C0 (omegaBAR) and the nonlinear term f:[0, 1] --> R are given. (More general coefficients than c + alpha (y), beta (y, c) are also treated.) We obtain a fairly general resolution of this problem. The results depend on the type of nonlinearity considered. When f is of the. bistable type, or of the "ignition temperature" type in combustion, we show the existence and uniqueness of c and of the profile u. In the case that f > 0 in (0, 1), we show the existence of c* is-an-element-of R such that a solution exists if and only if c greater-than-or-equal-to c*. These results extend to higher dimensions various classical results. In particular they extend the result of Kolmogorov, Petrovsky and Piskounov.
引用
收藏
页码:497 / 572
页数:76
相关论文
共 41 条
[1]   PROPERTIES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (02) :121-&
[2]  
Aronson D., 1975, PARTIAL DIFFERENTIAL, P5, DOI DOI 10.1007/BFB0070595
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]  
BERESTYCKI H, 1989, J REINE ANGEW MATH, V396, P14
[5]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[6]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[7]  
Berestycki H., 1990, ANAL ET CETERA, P115
[8]  
Berestycki H., 1991, NONLINEAR ANAL TRIBU, P135
[9]  
BERESTYCKI H, UNPUB MATH ASPECTS P
[10]  
BERESTYCKI H, 1990, UNIFORM ESTIMATES RE, P567