A GENERAL FREE-VOLUME BASED THEORY FOR THE DIFFUSION OF LARGE MOLECULES IN AMORPHOUS POLYMERS ABOVE TG .4. POLYMER PENETRANT INTERACTIONS

被引:27
作者
COUGHLIN, CS [1 ]
MAURITZ, KA [1 ]
STOREY, RF [1 ]
机构
[1] UNIV SO MISSISSIPPI,DEPT POLYMER SCI,SO STN,BOX 10076,HATTIESBURG,MS 39406
关键词
D O I
10.1021/ma00007a014
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We previously advanced a mainly free volume based, penetrant molecular shape dependent theory for the diffusion of relatively large molecules in amorphous rubbery polymers. When tested against experimental evidence for plasticizer-in-PVC diffusion, our theory predicted diffusion coefficients (D) that were in reasonable agreement, although the trends with penetrant molecular size and temperature did not display adequate sensitivity. In this work, we have refined the theory to include a more realistic and molecular-based accounting of important polymer-penetrant interactions. The general diffusion equation has been appropriately modified to include an explicit activation energy for diffusion. Activation energies were determined by using a new "reverse solvation" model, which employs molecular mechanics based groupwise intermolecular energy calculations. Plasticizer-in-PVC intermolecular energies were calculated in this way for a series of dialkyl phthalate plasticizers and were then employed in the modified diffusion equation to predict diffusion coefficients. The results show a remarkable improvement over our previous calculations in that the calculated D's follow the experimental data more closely and the shapes of the D vs T and D vs molecular size curves are more accurately reproduced.
引用
收藏
页码:1526 / 1534
页数:9
相关论文
共 15 条
[1]  
[Anonymous], CONFORMATIONAL PROPE
[2]  
CONNOLY M, 1981, QCPE, P429
[3]   A GENERAL FREE-VOLUME BASED THEORY FOR THE DIFFUSION OF LARGE MOLECULES IN AMORPHOUS POLYMERS ABOVE TG .3. THEORETICAL CONFORMATIONAL-ANALYSIS OF MOLECULAR SHAPE [J].
COUGHLIN, CS ;
MAURITZ, KA ;
STOREY, RF .
MACROMOLECULES, 1990, 23 (12) :3187-3192
[4]   DIFFUSION-CONTROLLED STRESS RELAXATION IN POLYMERS .2. STRESS RELAXATION IN SWOLLEN POLYMERS [J].
FUJITA, H ;
KISHIMOTO, A .
JOURNAL OF POLYMER SCIENCE, 1958, 28 (118) :547-567
[5]  
Glasstone S., 1941, THEORY RATE PROCESSE, P516
[6]  
Hildebrand JH, 1950, SOLUBILITY NONELECTR
[7]  
HILL TL, 1960, INTRO STATISTICAL TH
[8]   ON RELATIVE ROLES OF FREE VOLUME AND ACTIVATION ENERGY IN VISCOSITY OF LIQUIDS [J].
MACEDO, PB ;
LITOVITZ, TA .
JOURNAL OF CHEMICAL PHYSICS, 1965, 42 (01) :245-&
[9]  
Mauritz K. A., 1990, J VINYL ADDIT TECHNO, V12, P165, DOI DOI 10.1002/VNL.730120309
[10]   A GENERAL FREE-VOLUME BASED THEORY FOR THE DIFFUSION OF LARGE MOLECULES IN AMORPHOUS POLYMERS ABOVE TG .1. APPLICATION TO DI-NORMAL-ALKYL PHTHALATES IN PVC [J].
MAURITZ, KA ;
STOREY, RF ;
GEORGE, SE .
MACROMOLECULES, 1990, 23 (02) :441-450