KNOT POLYNOMIALS AND VASSILIEV INVARIANTS

被引:271
作者
BIRMAN, JS
LIN, XS
机构
[1] Department of Mathematics, Columbia University, New York, 10027, NY
关键词
D O I
10.1007/BF01231287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fundamental relationship is established between Jones' knot invariants and Vassiliev's knot invariants. Since Vassiliev's knot invariants have a firm grounding in classical topology, one obtains as a result a first step in understanding the Jones polynomial by topological methods.
引用
收藏
页码:225 / 270
页数:46
相关论文
共 14 条
[1]  
BARNATAN D, 1990, THESIS PRINCETON U
[2]   JONES BRAID-PLAT FORMULA AND A NEW SURGERY TRIPLE [J].
BIRMAN, JS ;
KANENOBU, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) :687-695
[3]  
BIRMAN JS, IN PRESS B AMS
[4]  
FREYD P, 1985, B AM MATH SOC, V12
[5]   ON KNOT INVARIANTS RELATED TO SOME STATISTICAL MECHANICAL MODELS [J].
JONES, VFR .
PACIFIC JOURNAL OF MATHEMATICS, 1989, 137 (02) :311-334
[6]   HECKE ALGEBRA REPRESENTATIONS OF BRAID-GROUPS AND LINK POLYNOMIALS [J].
JONES, VFR .
ANNALS OF MATHEMATICS, 1987, 126 (02) :335-388
[7]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[8]  
KAUFFMAN L, 1992, KNOTS PHYSICS
[9]   AN INVARIANT OF REGULAR ISOTOPY [J].
KAUFFMAN, LH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) :417-471
[10]  
LIN XS, 1992, VERTEX MODELS QUANTU