BAYESIAN NONPARAMETRIC BANDITS

被引:9
作者
CLAYTON, MK [1 ]
BERRY, DA [1 ]
机构
[1] UNIV MINNESOTA,SCH STAT,MINNEAPOLIS,MN 55455
关键词
D O I
10.1214/aos/1176349753
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1523 / 1534
页数:12
相关论文
共 12 条
[1]  
Berry D.A., 1985, BANDIT PROBLEMS SEQU, DOI DOI 10.1007/978-94-015-3711-7
[2]   BERNOULLI ONE-ARMED BANDITS - ARBITRARY DISCOUNT SEQUENCES [J].
BERRY, DA ;
FRISTEDT, B .
ANNALS OF STATISTICS, 1979, 7 (05) :1086-1105
[3]   BERNOULLI 2-ARMED BANDIT [J].
BERRY, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03) :871-&
[4]  
BERRY DA, 1985, ENCY STATISTICAL SCI, V6
[5]   ON SEQUENTIAL DESIGNS FOR MAXIMIZING THE SUM OF N OBSERVATIONS [J].
BRADT, RN ;
JOHNSON, SM ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (04) :1060-1074
[6]  
Chernoff H., 1968, SANKHYA A, V30, P221
[7]  
CLAYTON MK, 1983, THESIS U MINNESOTA
[8]  
FAHRENHOLTZ SK, 1982, THESIS IOWA STATE U
[9]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[10]  
Marshall A. W., 1979, INEQUALITIES THEORY, V143