MAXIMUM-PRINCIPLES AND A PRIORI ESTIMATES FOR A CLASS OF PROBLEMS FROM NONLINEAR ELASTICITY

被引:45
作者
BAUMAN, P [1 ]
OWEN, NC [1 ]
PHILLIPS, D [1 ]
机构
[1] UNIV SHEFFIELD,DEPT APPL & COMPUTAT MATH,SHEFFIELD S10 2TN,S YORKSHIRE,ENGLAND
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1991年 / 8卷 / 02期
关键词
NONLINEAR ELLIPTIC SYSTEM; ELASTIC MATERIAL;
D O I
10.1016/S0294-1449(16)30269-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider smooth solutions, U, to the nonlinear elliptic system associated with a two dimensional elastic material which has energy functional [GRAPHICS] The function H (d) is nonnegative, convex and unbounded in a neighborhood of zero. Two maximum principles are proved for DU and we show that if OMEGA' subset-of subset-of OMEGA then parallel-to DU parallel-to C-alpha(OMEGA') and parallel-to DU-1 parallel-to L infinity (OMEGA') are bounded a priori in terms of parallel-to DU parallel-to L(p)(OMEGA) and W (U) for some p = p (H).
引用
收藏
页码:119 / 157
页数:39
相关论文
共 9 条
[1]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[2]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[3]  
BALL JM, 1983, P ISIMM C PARIS
[4]  
EVANS LC, 1986, ARCH RATION MECH AN, V95, P227
[5]   BLOWUP, COMPACTNESS AND PARTIAL REGULARITY IN THE CALCULUS OF VARIATIONS [J].
EVANS, LC ;
GARIEPY, RF .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (02) :361-371
[6]   CARTESIAN CURRENTS, WEAK DIFFEOMORPHISMS AND EXISTENCE THEOREMS IN NONLINEAR ELASTICITY [J].
GIAQUINTA, M ;
MODICA, G ;
SOUCEK, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 106 (02) :97-159
[7]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C
[8]  
Gilbarg D., 1986, ELLIPTIC PARTIAL DIF