NECESSARY AND SUFFICIENT CONDITIONS FOR THE ASYMPTOTIC NORMALITY OF PERTURBED SAMPLE QUANTILES

被引:14
作者
RALESCU, SS
SUN, S
机构
[1] CUNY QUEENS COLL,DEPT MATH,FLUSHING,NY 11367
[2] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47401
[3] JAMES MADISON UNIV,DEPT MATH,HARRISONBURG,VA 22807
关键词
PERTURBED SAMPLE QUANTILE; KERNEL ESTIMATE; BANDWIDTH; ASYMPTOTIC NORMALITY;
D O I
10.1016/0378-3758(93)90067-G
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We deal with perturbed sample quantiles based on a kernel k and a sequence of window-width a(n) > 0. Under minimal assumptions on the underlying cumulative distribution and the kernel k, necessary and sufficient conditions for the central limit theorem to hold for these quantiles are found for the sequence {a(n)}. Our results (i) generalize the central limit theorem of Nadaraya (1964), and (ii) extend results of Chanda (1975) and Falk (1985). Several applications are included.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 24 条
[1]   A NOTE ON THE ESTIMATION OF A DISTRIBUTION FUNCTION AND QUANTILES BY A KERNEL-METHOD [J].
AZZALINI, A .
BIOMETRIKA, 1981, 68 (01) :326-328
[2]  
AZZALINI A, 1979, UNPUB EFFICIENCY KER
[3]  
CHANDRA KC, 1975, CALCUTTA STAT ASSOC, P123
[4]  
Falk, 1983, STAT NEERL, V37, P73, DOI DOI 10.1111/J.1467-9574.1983.TB00802.X
[5]   WEAK-CONVERGENCE OF SMOOTHED AND NONSMOOTHED BOOTSTRAP QUANTILE ESTIMATES [J].
FALK, M ;
REISS, RD .
ANNALS OF PROBABILITY, 1989, 17 (01) :362-371
[6]   RELATIVE DEFICIENCY OF KERNEL TYPE ESTIMATORS OF QUANTILES [J].
FALK, M .
ANNALS OF STATISTICS, 1984, 12 (01) :261-268
[7]   ASYMPTOTIC NORMALITY OF THE KERNEL QUANTILE ESTIMATOR [J].
FALK, M .
ANNALS OF STATISTICS, 1985, 13 (01) :428-433
[8]  
HAND DJ, 1982, KERNEL DISCRIMINANT
[9]   ASYMPTOTIC PROPERTIES OF PERTURBED EMPIRICAL DISTRIBUTION-FUNCTIONS EVALUATED AT A RANDOM POINT [J].
LEA, CD ;
PURI, ML .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1988, 19 (02) :201-215
[10]  
Mack Y P, 1987, PROBAB MATH STATIST, V8, P183