NON-LINEAR STABILITY OF THE MAGNETIC BENARD-PROBLEM VIA A GENERALIZED ENERGY METHOD

被引:76
作者
GALDI, GP
机构
关键词
D O I
10.1007/BF00280699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:167 / 186
页数:20
相关论文
共 27 条
[1]  
Adams R., 1976, SOBOLEV SPACES
[2]   Recent works on cellular swirls and band swirls - Application in astrophysics and metereology [J].
Benard, H ;
Avsec, D .
JOURNAL DE PHYSIQUE ET LE RADIUM, 1938, 9 :486-500
[3]   NONLINEAR-INTERACTION OF MAGNETIC-FIELD AND CONVECTION [J].
BUSSE, FH .
JOURNAL OF FLUID MECHANICS, 1975, 71 (SEP9) :193-206
[4]   UNIVERSAL STABILITY OF HYDROMAGNETIC FLOWS [J].
CARMI, S ;
LALAS, DP .
JOURNAL OF FLUID MECHANICS, 1970, 43 :711-&
[5]  
CARMI S, 1976, J MECANIQUE, V15, P713
[6]  
CARMI S, 1972, PHYS FLUIDS, V15, P212
[7]  
Chandrasekhar S., 1981, HYDRODYNAMIC HYDROMA
[8]   ON PRINCIPLE OF EXCHANGE OF STABILITIES [J].
DAVIS, SH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 310 (1502) :341-&
[9]   BUOYANCY-SURFACE TENSION INSTABILITY BY METHOD OF ENERGY [J].
DAVIS, SH .
JOURNAL OF FLUID MECHANICS, 1969, 39 :347-&
[10]  
DAVIS SH, 1969, P IUTAM S, P222