THE MODULI SPACE METRIC FOR WELL-SEPARATED BPS MONOPOLES

被引:103
作者
GIBBONS, GW
MANTON, NS
机构
[1] Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 9EW, Silver Street
关键词
D O I
10.1016/0370-2693(95)00813-Z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Lagrangian for the motion of n well-separated BPS monopoles is calculated by treating the monopoles as point particles with magnetic, electric and scalar charges. It can be reinterpreted as the Lagrangian for geodesic motion on the asymptotic region of the n-monopole moduli space, thereby determining the asymptotic metric on the moduli space. The metric is hyperkahler, and is an explicit example of a type of metric considered previously.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 19 条
[1]   LOW-ENERGY SCATTERING OF NON-ABELIAN MAGNETIC MONOPOLES [J].
ATIYAH, M ;
HITCHIN, NJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 315 (1533) :459-469
[2]  
Atiyah M.F., 1988, GEOMETRY DYNAMICS MA, DOI DOI 10.1515/9781400859306
[3]   LOW-ENERGY SCATTERING OF NON-ABELIAN MONOPOLES [J].
ATIYAH, MF ;
HITCHIN, NJ .
PHYSICS LETTERS A, 1985, 107 (01) :21-25
[4]  
BIELAWSKI R, 1994, MONOPOLES PARTICLES
[5]   TOPOLOGY, ENTROPY, AND WITTEN INDEX OF DILATON BLACK-HOLES [J].
GIBBONS, GW ;
KALLOSH, RE .
PHYSICAL REVIEW D, 1995, 51 (06) :2839-2862
[6]   GRAVITATIONAL MULTI-INSTANTONS [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICS LETTERS B, 1978, 78 (04) :430-432
[7]   CLASSICAL AND QUANTUM DYNAMICS OF BPS MONOPOLES [J].
GIBBONS, GW ;
MANTON, NS .
NUCLEAR PHYSICS B, 1986, 274 (01) :183-224
[8]   GRAVITATIONAL INSTANTONS [J].
HAWKING, SW .
PHYSICS LETTERS A, 1977, 60 (02) :81-83
[9]  
HITCHIN NJ, 1987, COMMUN MATH PHYS, V108, P537
[10]  
HITCHIN NJ, 1995, DAMTP9517 PREPR