PARTICLE CONTENTS OF HIGHER-DERIVATIVE GRAVITY

被引:26
作者
ALONSO, JC
BARBERO, F
JULVE, J
TIEMBLO, A
机构
[1] Instituto de Matemticas y Física Fundamental, CSIC, 28006 Madrid
关键词
D O I
10.1088/0264-9381/11/4/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The (lower derivative) action, which describes the actual degrees of freedom of a (higher derivative) theory of gravity quadratic in the scalar and Ricci curvatures, is found. Key steps are a Legendre transform and a suitable diagonalization procedure. Some consequences of this insight are outlined.
引用
收藏
页码:865 / 882
页数:18
相关论文
共 23 条
[1]   ASYMPTOTIC FREEDOM IN HIGHER-DERIVATIVE QUANTUM-GRAVITY [J].
AVRAMIDI, IG ;
BARVINSKY, AO .
PHYSICS LETTERS B, 1985, 159 (4-6) :269-274
[2]   INFLATION AND THE CONFORMAL STRUCTURE OF HIGHER-ORDER GRAVITY THEORIES [J].
BARROW, JD ;
COTSAKIS, S .
PHYSICS LETTERS B, 1988, 214 (04) :515-521
[3]   QUANTIZING 4TH-ORDER GRAVITY THEORIES - THE FUNCTIONAL INTEGRAL [J].
BARTH, NH ;
CHRISTENSEN, SM .
PHYSICAL REVIEW D, 1983, 28 (08) :1876-1893
[4]  
BARTOLI A, 1993, IMAFF9310 PREPR
[5]   INSTANTON SOLUTIONS IN GRAVITATIONAL THEORIES WITH NONLINEAR LAGRANGIAN [J].
BERTOLAMI, O .
PHYSICS LETTERS B, 1990, 234 (03) :258-264
[6]   CAN GRAVITATION HAVE A FINITE-RANGE [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW D, 1972, 6 (12) :3368-3382
[7]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[8]  
BRANS CH, 1989, CLASSICAL QUANT GRAV, V6, P557
[9]  
BRANS CH, 1988, CLASSICAL QUANT GRAV, V5, P233
[10]   ON THE EQUIVALENCE OF THE RELATIVISTIC THEORIES OF GRAVITATION [J].
FERRARIS, M ;
KIJOWSKI, J .
GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (02) :165-180