HAMILTONIAN-STRUCTURE FOR THE MODULATION EQUATIONS OF A SINE-GORDON WAVE-TRAIN

被引:18
作者
ERCOLANI, N
FOREST, MG
MCLAUGHLIN, DW
MONTGOMERY, R
机构
[1] UNIV ARIZONA, DEPT MATH, TUCSON, AZ 85721 USA
[2] MIT, DEPT MATH, CAMBRIDGE, MA 02139 USA
关键词
D O I
10.1215/S0012-7094-87-05548-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:949 / 983
页数:35
相关论文
共 35 条
[1]  
ABLOWITZ MJ, 1970, STUD APPL MATH, V49, P225
[2]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[3]  
ABRAHAM R, 1978, F MECHANICS
[4]  
DATE E, 1982, OSAKA J MATH, V19, P125
[5]  
ERCOLANI N, 1984, STUD APPL MATH, V71, P91
[6]  
ERCOLANI N, 1985, P AMS SIAM C NONLINE
[7]   THE GEOMETRY OF REAL SINE-GORDON WAVETRAINS [J].
ERCOLANI, NM ;
FOREST, MG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (01) :1-49
[8]  
FAY J, 1984, LECTURE NOTES MATH, V352
[9]   KAC-MOODY LIE-ALGEBRAS AND SOLITON-EQUATIONS .2. LAX EQUATIONS ASSOCIATED WITH A1 [J].
FLASCHKA, H ;
NEWELL, AC ;
RATIU, T .
PHYSICA D, 1983, 9 (03) :300-323
[10]   CANONICALLY CONJUGATE VARIABLES FOR KORTEWEG-DEVRIES EQUATION AND TODA LATTICE WITH PERIODIC BOUNDARY-CONDITIONS [J].
FLASCHKA, H ;
MCLAUGHLIN, DW .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :438-456