MULTIPLE INITIATION MECHANISMS ADAPT PHAGE-T4 DNA-REPLICATION TO PHYSIOLOGICAL-CHANGES DURING T4S DEVELOPMENT

被引:47
作者
MOSIG, G
COLOWICK, N
GRUIDL, ME
CHANG, A
HARVEY, AJ
机构
关键词
DNA VIRUS; DNA REPLICATION; RECOMBINATION; RNA PRIMER; TRANSCRIPTION TERMINATION; RNA FOLDING;
D O I
10.1111/j.1574-6976.1995.tb00190.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We summarize the evidence for multiple pathways to initiate phage T4 DNA replication. In any infecting chromosome, leading DNA strands can be primed from pre-replicative transcripts, independent of primase activity, at one of several origins. Within each origin region, there are multiple RNA-DNA transition sites. However, the priming potential at each single site is very low. Our results suggest that origin transcripts can become primers for leading strand DNA synthesis without being processed, but that a promoter-proximal segment of each origin transcript plays an important structural role, as a proposed wedge, in the transition from RNA to DNA synthesis. Two recombination-dependent pathways render subsequent phage T4 DNA replication independent of transcription. The first of these requires proteins that are synthesized during the pre-replicative phase of infection. It is active as soon as the first growing points, initiated at origins, have reached a chromosomal end. The other one requires at least one late protein: endonuclease VII, a resolvase that cuts recombinational junctions. The latter pathway can bypass primase deficiencies by allowing retrograde DNA synthesis without Okazaki pieces. We discuss the integration of these multiple and redundant pathways into the developmental program of T4. Competition between these initiation mechanisms and with other DNA transactions allows for integration of replication controls with transcription, recombination and packaging of the DNA.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 64 条
[1]   UNSCRAMBLING THE PUZZLE OF BIOLOGICAL MACHINES - THE IMPORTANCE OF THE DETAILS [J].
ALBERTS, B ;
MIAKELYE, R .
CELL, 1992, 68 (03) :415-420
[2]  
ALBERTS BM, 1984, COLD SPRING HARB SYM, V49, P1
[3]   D-LOOPS AND R-LOOPS - ALTERNATIVE MECHANISMS FOR THE INITIATION OF CHROMOSOME-REPLICATION IN ESCHERICHIA-COLI [J].
ASAI, T ;
KOGOMA, T .
JOURNAL OF BACTERIOLOGY, 1994, 176 (07) :1807-1812
[4]  
BAKER TA, 1992, ANNU REV GENET, V26, P447
[5]   ROLE OF MOTA TRANSCRIPTION FACTOR IN BACTERIOPHAGE-T4 DNA-REPLICATION [J].
BENSON, KH ;
KREUZER, KN .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (01) :88-100
[6]   CONTROL OF COLE1 PLASMID REPLICATION BY ANTISENSE RNA [J].
CESARENI, G ;
HELMERCITTERICH, M ;
CASTAGNOLI, L .
TRENDS IN GENETICS, 1991, 7 (07) :230-235
[7]  
CHANG A, 1992, THESIS VANDERBILT U
[8]   THE C4 REPRESSOR OF BACTERIOPHAGE P1 IS A PROCESSED 77-BASE ANTISENSE RNA [J].
CITRON, M ;
SCHUSTER, H .
NUCLEIC ACIDS RESEARCH, 1992, 20 (12) :3085-3090
[10]   EARLY INTERMEDIATES IN BACTERIOPHAGE-T4 DNA-REPLICATION AND RECOMBINATION [J].
DANNENBERG, R ;
MOSIG, G .
JOURNAL OF VIROLOGY, 1983, 45 (02) :813-831