LAPLACE EIGENVALUES AND BANDWIDTH-TYPE INVARIANTS OF GRAPHS

被引:21
作者
JUVAN, M
MOHAR, B
机构
[1] University of Ljubljana, Department of Mathematics, Ljubljana, Jadranska
关键词
D O I
10.1002/jgt.3190170313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For (weighted) graphs several labeling properties and their relation to the eigenvalues of the Laplacian matrix of a graph are considered. Several upper and lower bounds on the bandwidth and other min-sum problems are derived. Most of these bounds depend on Laplace eigenvalues of the graphs. The results are applied in the study of bandwidth and the min-sums of random graphs, random regular graphs, and Kneser graphs.
引用
收藏
页码:393 / 407
页数:15
相关论文
共 23 条
[1]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[2]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[3]  
Bien F., 1989, NOTICES AM MATH SOC, V36, P5
[4]  
Bollobas B, 1979, GRAPH THEORY INTRO C
[5]   THE BANDWIDTH PROBLEM FOR GRAPHS AND MATRICES - A SURVEY [J].
CHINN, PZ ;
CHVATALOVA, J ;
DEWDNEY, AK ;
GIBBS, NE .
JOURNAL OF GRAPH THEORY, 1982, 6 (03) :223-254
[6]  
CHIU P, 1989, CUBIC RAMANUJAN GRAP
[7]  
Chung F., 1988, SELECTED TOPICS GRAP, V3, P151
[8]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[9]   ON THE 2ND EIGENVALUE AND RANDOM-WALKS IN RANDOM D-REGULAR GRAPHS [J].
FRIEDMAN, J .
COMBINATORICA, 1991, 11 (04) :331-362
[10]   THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES [J].
FUREDI, Z ;
KOMLOS, J .
COMBINATORICA, 1981, 1 (03) :233-241