Dimeric fatty acids obtained by the clay-catalyzed dimerisation of the conjugated fatty acid (mixture of 9,11-octadecadienoic acid and 10,12-octadecadienoic acid) can be separated via HPLC in form of their dimethylates in three fractions in accordance with results obtained by separation of dimeric fatty acids of linoleic acid. The first fraction of aromatic dimeric fatty acids with the molecular weight 586 mainly contains compounds with a tetrasubstituted ring system. The second fraction, consisting of alicyclic unsaturated dimeric fatty acids, is characterized by the molecular weight 590 and a cyclohexene ring system. The third fraction corresponds to alicyclic saturated dimeric fatty acids. Dimeric fatty acids resulting of a Diels-Alder-reaction were detected neither in the end products nor as products in the early phase of the dimerisation. The results obtained by the investigation of the dimerisation of conjugated fatty acids are similar to those of the dimerisation of linoleic acid. Consequently a Diels-Alder-reaction is not involved in the formation of dimeric fatty acids. Although conjugated fatty acids are predominated to undergo a Diels-Alder-reaction no such products could be detected. This result strengthens the thesis that the dimerisation of unsaturated fatty acids is initiated by a cationic mechanism. The composition of the dimeric fatty acid using conjugated fatty acids is more uniform than that of usual mixtures of linoleic and linolenic acid. This provides evidence that a modification of the educt fatty acids can yield new structures of the dimerisation products.