ON THE NONPARAMETRIC-ESTIMATION OF COVARIANCE FUNCTIONS

被引:97
作者
HALL, P [1 ]
FISHER, NI [1 ]
HOFFMANN, B [1 ]
机构
[1] CSIRO,DIV MATH & STAT,N RYDE,NSW 2113,AUSTRALIA
关键词
CONVERGENCE RATE; CORRELATION; COVARIANCE; POSITIVE SEMIDEFINITE; STOCHASTIC PROCESS; KERNEL; VARIANCE; VARIOGRAM;
D O I
10.1214/aos/1176325774
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe kernel methods for estimating the covariance function of a stationary stochastic process, and show how to ensue that the estimator has the positive semidefiniteness property. From a practical viewpoint, our method is significant because it does not demand a parametric model for covariance. From a technical angle, our results exhibit a striking departure from those in more familiar cases of kernel estimation. For example, in the context of covariance estimation, kernel estimators can have the same convergence rates as maximum likelihood estimators, and can have exceptionally fast convergence rates when employed to estimate variance.
引用
收藏
页码:2115 / 2134
页数:20
相关论文
共 13 条
[1]  
[Anonymous], 1978, MINING GEOSTATISTICS
[2]   TESTING VARIOGRAMS FOR POSITIVE-DEFINITENESS [J].
ARMSTRONG, M ;
DIAMOND, P .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1984, 16 (04) :407-421
[3]  
BERMAN M, 1989, J ROY STAT SOC B MET, V51, P81
[4]   ON THE PROBLEM OF PERMISSIBLE COVARIANCE AND VARIOGRAM MODELS [J].
CHRISTAKOS, G .
WATER RESOURCES RESEARCH, 1984, 20 (02) :251-265
[5]  
CRESSIE NA, 1991, STATISTICS SPATIAL D
[6]  
DIGGLE PJ, 1987, BIOMETRIKA, V74, P763
[7]  
Grenander U., 1950, ARK MAT, V1, P195
[8]  
HALL P, 1980, MARTINGALE LIMIT THE
[9]  
Matheron G, 1971, CAHIERS CTR MORPHOLO, V5
[10]   NONPARAMETRIC-ESTIMATION OF NONSTATIONARY SPATIAL COVARIANCE STRUCTURE [J].
SAMPSON, PD ;
GUTTORP, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) :108-119