MODELS FOR LOCAL OHMIC QUANTUM DISSIPATION

被引:41
作者
GALLIS, MR
机构
[1] Department of Physics, Pennsylvania State University, Schuylkill Campus, Schuylkill Haven
来源
PHYSICAL REVIEW A | 1993年 / 48卷 / 02期
关键词
D O I
10.1103/PhysRevA.48.1028
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a family of master equations for local quantum dissipation. The master equations are constructed in the form of Lindblad generators, with the constraints that the dissipation be strictly linear (i.e., Ohmic), isotropic, and translationally invariant. The resulting master equations are given in both the Schrodinger and Heisenberg forms. We obtain fluctuation-dissipation relations, and discuss the relaxation of average kinetic energy to effective thermal equilibrium values. We compare our results for one dimension to the Dekker master equation [H. Dekker, Phys. Rep. 80, 1 (1981)], which can be interpreted as a low-length-scale approximation of our model, as well as the Caldeira-Leggett master equation [A. O. Caldeira and A. J. Leggett, Physica (Utrecht) A 121, 587 (1983)].
引用
收藏
页码:1028 / 1034
页数:7
相关论文
共 11 条
[1]  
Alicki R., 2007, QUANTUM DYNAMICAL SE, V717
[2]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[3]   CLASSICAL AND QUANTUM-MECHANICS OF THE DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 80 (01) :1-112
[4]   ORTHOGONAL JUMPS OF THE WAVEFUNCTION IN WHITE-NOISE POTENTIALS [J].
DIOSI, L .
PHYSICS LETTERS A, 1985, 112 (6-7) :288-292
[5]   THE THEORY OF A GENERAL QUANTUM SYSTEM INTERACTING WITH A LINEAR DISSIPATIVE SYSTEM [J].
FEYNMAN, RP ;
VERNON, FL .
ANNALS OF PHYSICS, 1963, 24 (01) :118-173
[6]   SPATIAL CORRELATIONS OF RANDOM POTENTIALS AND THE DYNAMICS OF QUANTUM COHERENCE [J].
GALLIS, MR .
PHYSICAL REVIEW A, 1992, 45 (01) :47-53
[7]   ENVIRONMENTAL AND SPONTANEOUS LOCALIZATION [J].
GALLIS, MR ;
FLEMING, GN .
PHYSICAL REVIEW A, 1990, 42 (01) :38-48
[8]   QUANTUM BROWNIAN-MOTION - THE FUNCTIONAL INTEGRAL APPROACH [J].
GRABERT, H ;
SCHRAMM, P ;
INGOLD, GL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 168 (03) :115-207
[9]   GENERATORS OF QUANTUM DYNAMICAL SEMIGROUPS [J].
LINDBLAD, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (02) :119-130
[10]  
SANDULESCU A, 1987, ANN PHYS-NEW YORK, V173, P277, DOI 10.1016/0003-4916(87)90162-X