LYAPUNOV EXPONENTS OF THE LOGISTIC MAP WITH PERIODIC FORCING

被引:26
作者
MARKUS, M
HESS, B
机构
[1] Max-Planck-Inst fuer, Ernaehrungsphysiologie, Germany
关键词
Mathematical Transformations - System Stability - Lyapunov Methods;
D O I
10.1016/0097-8493(89)90019-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The iterative map Xn+1 = rnXn (1 - Xn) is investigated with rn changing periodically between two values A and B. Different periodicities are assumed, e.g., {rn} = {BABA ...} or {rn} = {BBABA BBABA...}. The Lyapunov exponent (a measure of average stability) is displayed with high resolution on the A-B-plane. The resulting images have aesthetically appealing self-similar structures. Furthermore, these images allow with one glimpse the identification of a number of system properties: coexistence of attractors, superstable curves, order by alternation of chaotic processes, and chaos by periodic resetting from a stable into an unstable fixed point.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 1986, BEAUTY FRACTALS IMAG
[2]   ITERATIVE PROPERTIES OF A ONE-DIMENSIONAL QUARTIC MAP - CRITICAL LINES AND TRICRITICAL BEHAVIOR [J].
CHANG, SJ ;
WORTIS, M ;
WRIGHT, JA .
PHYSICAL REVIEW A, 1981, 24 (05) :2669-2684
[3]  
Collet P., 1980, ITERATED MAPS INTERV
[4]   CHAOTIC BEHAVIOR IN THE ONCHIDIUM GIANT-NEURON UNDER SINUSOIDAL STIMULATION [J].
HAYASHI, H ;
ISHIZUKA, S ;
OHTA, M ;
HIRAKAWA, K .
PHYSICS LETTERS A, 1982, 88 (08) :435-438
[5]  
Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT
[6]   PROPERTIES OF STRANGE ATTRACTORS IN YEAST GLYCOLYSIS [J].
MARKUS, M ;
KUSCHMITZ, D ;
HESS, B .
BIOPHYSICAL CHEMISTRY, 1985, 22 (1-2) :95-105
[7]  
MARKUS M, 1984, P NATL ACAD SCI USA, V81, P4393
[8]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467
[10]   A NOTE ON RENDERING 3-D STRANGE-ATTRACTORS [J].
PICKOVER, CA .
COMPUTERS & GRAPHICS, 1988, 12 (02) :263-267