TRANSFORMATIONS IN NULL MUTANTS OF HOX GENES - DO THEY REPRESENT INTERCALARY REGENERATES

被引:12
作者
CRAWFORD, M
机构
[1] Institut de Recherches Cliniques de Montreal, Montreal, Quebec, H2W 1R7
关键词
D O I
10.1002/bies.950171211
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the minds of many, Hox gene null mutant phenotypes have confirmed the direct role that these genes play in specifying the pattern of vertebrate embryos. The genes are envisaged as defining discrete spatial domains and, subsequently, conferring specific segmental identities on cells undergoing differentiation along the antero-posterior axis. However, several aspects of the observed mutant phenotypes are inconsistent with this view. These include: the appearance of other, unexpected transformations along the dorsal axis; the occurrence of mirror-image duplications; and the development of anomalies outside the established domains of normal Hox gene expression. In this paper, Hox gene disruptions are shown to elicit regeneration-like responses in tissues confronted with discontinuities in axial identity. The polarities and orientations of transformed segments which emerge as a consequence of this response obey the rules of distal transformation and intercalary regeneration. In addition, the incidence of periodic anomalies suggests that the initial steps of Hox-mediated patterning occurs in Hensen's node. As gastrulation proceeds, mesoderm cell cycle kinetics impose constraints upon subsequent cellular differentiation. This results in the delayed manifestation of transformations along the antero-posterior axis. Finally, a paradigm is sketched in which temporal, rather than spatial axial determinants direct differentiation. Specific, testable predictions are made about the role of Hox genes in the establishment of segmental identity.
引用
收藏
页码:1065 / 1073
页数:9
相关论文
共 47 条
[1]   HNF-3-BETA IS ESSENTIAL FOR NODE AND NOTOCHORD FORMATION IN MOUSE DEVELOPMENT [J].
ANG, SL ;
ROSSANT, J .
CELL, 1994, 78 (04) :561-574
[2]  
BARRES BA, 1994, DEVELOPMENT, V120, P1097
[3]  
BEDDINGTON RSP, 1992, DEVELOPMENT, P157
[4]   GASTRULATION IN THE MOUSE - THE ROLE OF THE HOMEOBOX GENE GOOSECOID [J].
BLUM, M ;
GAUNT, SJ ;
CHO, KWY ;
STEINBEISSER, H ;
BLUMBERG, B ;
BITTNER, D ;
DEROBERTIS, EM .
CELL, 1992, 69 (07) :1097-1106
[5]   RETINOIC ACID, LOCAL CELL CELL-INTERACTIONS, AND PATTERN-FORMATION IN VERTEBRATE LIMBS [J].
BRYANT, SV ;
GARDINER, DM .
DEVELOPMENTAL BIOLOGY, 1992, 152 (01) :1-25
[6]   SUPERNUMERARY LIMBS IN AMPHIBIANS - EXPERIMENTAL PRODUCTION IN NOTOPHTHALMUS-VIRIDESCENS AND A NEW INTERPRETATION OF THEIR FORMATION [J].
BRYANT, SV ;
ITEN, LE .
DEVELOPMENTAL BIOLOGY, 1976, 50 (01) :212-234
[7]  
BRYANT SV, 1993, NATO ADV SCI INST SE, V259, P37
[8]   PBX PROTEINS DISPLAY HEXAPEPTIDE-DEPENDENT COOPERATIVE DNA-BINDING WITH A SUBSET OF HOX PROTEINS [J].
CHANG, CP ;
SHEN, WF ;
ROZENFELD, S ;
LAWRENCE, HJ ;
LARGMAN, C ;
CLEARY, ML .
GENES & DEVELOPMENT, 1995, 9 (06) :663-674
[9]   DEVELOPMENTAL DEFECTS OF THE EAR, CRANIAL NERVES AND HINDBRAIN RESULTING FROM TARGETED DISRUPTION OF THE MOUSE HOMEOBOX GENE HOX-1.6 [J].
CHISAKA, O ;
MUSCI, TS ;
CAPECCHI, MR .
NATURE, 1992, 355 (6360) :516-520
[10]   REGIONALLY RESTRICTED DEVELOPMENTAL DEFECTS RESULTING FROM TARGETED DISRUPTION OF THE MOUSE HOMEOBOX GENE HOX-1.5 [J].
CHISAKA, O ;
CAPECCHI, MR .
NATURE, 1991, 350 (6318) :473-479