A supervised learning neural network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregate (union) of fuzzy set hyperboxes. A fuzzy set hyperbox is an n-dimensional box defined by a min point and a max point with a corresponding membership function. The min-max points are determined using the fuzzy min-max learning algorithm, an expansion-contraction process that can learn nonlinear class boundaries in a single pass through the data and provides the ability to incorporate new and refine existing classes without retraining. The use of a fuzzy set approach to pattern classification inherently provides degree of membership information that is extremely useful in higher level decision making. This paper will describe the relationship between fuzzy sets and pattern classification. It explains the fuzzy min-max classifier neural network implementation, it outlines the learning and recall algorithms, and it provides several examples of operation that demonstrate the strong qualities of this new neural network classifier.