MONTE-CARLO INTEGRATION WITH QUASI-RANDOM NUMBERS - SOME EXPERIENCE

被引:38
作者
BERBLINGER, M
SCHLIER, C
机构
[1] Fakultät für Physik, Universität Freiburg
关键词
D O I
10.1016/0010-4655(91)90064-R
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We report on our general experience and on some test calculations with quasi-random numbers of the Halton type applied to Monte Carlo integration in several (4-8) dimensions. Compared with the traditional use of (pseudo-)random numbers we find that, at a prescribed level of accuracy, at least one order of magnitude in computing time may be saved even for a step function integrand.
引用
收藏
页码:157 / 166
页数:10
相关论文
共 23 条
  • [1] [Anonymous], 1960, NUMER MATH, DOI DOI 10.1007/BF01386213
  • [2] [Anonymous], 1972, UNIMOLECULAR REACTIO
  • [3] BOUND-STATES EMBEDDED IN THE CONTINUUM OF H-3(+A)
    BERBLINGER, M
    POLLAK, E
    SCHLIER, C
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (09) : 5643 - 5656
  • [4] BERBLINGER M, 1991, THESIS U FREIBURG
  • [5] IMPROVED LOW-DISCREPANCY SEQUENCE FOR MULTIDIMENSIONAL QUASI-MONTE CARLO INTEGRATION
    BRAATEN, E
    WELLER, G
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (02) : 249 - 258
  • [6] IMPLEMENTING SOBOLS QUASIRANDOM SEQUENCE GENERATOR
    BRATLEY, P
    FOX, BL
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (01): : 88 - 100
  • [7] DAVIS PJ, 1984, METHODS NUMERICAL IN
  • [8] MONTE-CARLO CALCULATIONS OF CLASSICAL DENSITY OF STATES FOR NONSEPARABLE POLYATOMIC POTENTIAL-ENERGY SURFACES
    FARANTOS, SC
    MURRELL, JN
    HAJDUK, JC
    [J]. CHEMICAL PHYSICS, 1982, 68 (1-2) : 109 - 117
  • [9] DISCREPANCY OF SEQUENCES ASSOCIATED WITH A NUMERATION SYSTEM (IN S-DIMENSION)
    FAURE, H
    [J]. ACTA ARITHMETICA, 1982, 41 (04) : 337 - 351
  • [10] HALTON J. H, 1960, NUMER MATH, V2, P196