NONHOLONOMIC CONTROL-SYSTEMS ON RIEMANNIAN-MANIFOLDS

被引:58
作者
BLOCH, AM
CROUCH, PE
机构
[1] UNIV MICHIGAN,ANN ARBOR,MI 48109
[2] ARIZONA STATE UNIV,CTR SYST SCI & ENGN,TEMPE,AZ 85287
关键词
RIEMANNIAN MANIFOLD; NONHOLONOMIC; CONTROL; OPTIMIZATION;
D O I
10.1137/S036301299223533X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives a general formulation of the theory of nonholonomic control systems on a Riemannian manifold modeled by second-order differential equations and using the unique Riemannian connection defined by the metric. The main concern is to introduce a reduction scheme, replacing some of the second-order equations by first-order equations. The authors show how constants of motion together with the nonholonomic constraints may be combined to yield such a reduction. The theory is applied to a particular class of nonholonomic control systems that may be thought of as modeling a generalized rolling ball. This class reduces to the classical example of a ball rolling without slipping on a horizontal plane.
引用
收藏
页码:126 / 148
页数:23
相关论文
共 43 条
  • [1] ABRAHAM R, 1978, F MECHANICS
  • [2] [Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
  • [3] Arnold V.I., 1988, ENCYCL MATH SCI, V3
  • [4] GEOMETRIC METHODS FOR NON-LINEAR OPTIMAL-CONTROL PROBLEMS
    BAILLIEUL, J
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1978, 25 (04) : 519 - 548
  • [5] Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
  • [6] BLISS GA, 1946, LECTURES CALCULUS VA
  • [7] CONTROL AND STABILIZATION OF NONHOLONOMIC DYNAMIC-SYSTEMS
    BLOCH, AM
    REYHANOGLU, M
    MCCLAMROCH, NH
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (11) : 1746 - 1757
  • [8] BLOCH AM, 1992, P NOLCOS 92 BORDEAUX
  • [9] Boothby W. M., 1975, INTRO DIFFERENTIABLE
  • [10] Brockett R.W., 1993, MOTION PLANNING, P1