GLOBAL STABILITY FOR THE SEIR MODEL IN EPIDEMIOLOGY

被引:592
作者
LI, MY
MULDOWNEY, JS
机构
[1] Department of Mathematics, University of Alberta, Edmonton
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0025-5564(95)92756-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The SEIR model with nonlinear incidence rates in epidemiology is studied. Global stability of the endemic equilibrium is proved using a general criterion for the orbital stability of periodic orbits associated with higher-dimensional nonlinear autonomous systems as well as the theory of competitive systems of differential equations.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 13 条
[1]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[2]  
Coppel W., 1965, HEATH MATH MONOGRAPH
[3]  
Hale J.K., 1969, ORDINARY DIFFERENTIA, VXXI, P332
[4]  
Hethcote HW, 1981, DIFF EQUAT, P65
[6]   ON BENDIXSON CRITERION [J].
LI, Y ;
MULDOWNEY, JS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (01) :27-39
[7]  
LI Y, 1992, PITMAN RES NOT MATH, V272, P144
[8]   DYNAMIC BEHAVIOR OF EPIDEMIOLOGIC MODELS WITH NONLINEAR INCIDENCE RATES [J].
LIU, WM ;
HETHCOTE, HW ;
LEVIN, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (04) :359-380
[9]  
London D., 1976, LINEAR MULTILINEAR A, V4, P179
[10]   LOGARITHMIC NORMS AND PROJECTIONS APPLIED TO LINEAR-DIFFERENTIAL SYSTEMS [J].
MARTIN, RH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 45 (02) :432-454