BOUNDS FOR ABNORMAL BINARY-CODES WITH COVERING RADIUS ONE

被引:8
作者
HONKALA, IS
HAMALAINEN, HO
机构
[1] Department of Mathematics, University of Turku, 20500
[2] Haukkamäentie 5 A 10, 40220, Keskipalokka
关键词
COVERING RADIUS; COVERING CODE; NORMAL AND ABNORMAL CODES;
D O I
10.1109/18.75256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown that if an (n,M)1 code (a binary code of length n with M codewords and covering radius 1) is abnormal then n greater-than-or-equal-to 9 and M greater-than-or-equal-to 96, and an abnormal (9, 118)1 code is constructed. Lower bounds on the minimum cardinality of abnormal (n,M)1 codes are derived. If an (n,M)1 code is abnormal, then it is shown that M greater-than-or-equal-to K(n,1) + n.
引用
收藏
页码:372 / 375
页数:4
相关论文
共 10 条
[1]   FURTHER RESULTS ON THE COVERING RADIUS OF CODES [J].
COHEN, GD ;
LOBSTEIN, AC ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :680-694
[2]   ON THE COVERING RADIUS OF CODES [J].
GRAHAM, RL ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) :385-401
[3]  
HAMALAINEN H, IN PRESS J COMB TH A
[4]  
HONKALA I, IN PRESS DISCRETE MA
[5]   LOWER BOUNDS FOR BINARY COVERING CODES [J].
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (02) :326-329
[6]  
HONKALA IS, IN PRESS IEEE T INFO
[7]  
HONKALA IS, 1989, 4TH P JOINT SWED SOV, P223
[8]   ON THE COVERING RADIUS PROBLEM FOR CODES .2. CODES OF LOW DIMENSION - NORMAL AND ABNORMAL CODES [J].
KILBY, KE ;
SLOANE, NJA .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (04) :619-627
[9]   ON NORMAL AND SUBNORMAL Q-ARY CODES [J].
LOBSTEIN, AC ;
VANWEE, GJM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) :1291-1295
[10]  
VANWEE GJM, IN PRESS IEEE T INFO