THE THERMOELASTIC MATERIAL MOMENTUM EQUATION

被引:30
作者
DASCALU, C
MAUGIN, GA
机构
[1] Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Paris Cedex 05, 75252, URA-CNRS 229, b.p. 162, Tour 66, 4, place Jussieu
关键词
D O I
10.1007/BF00041837
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The equation of material momentum, or pseudomomentum, is obtained for thermoelastic materials. This is done in the classic theory, based on the heat conduction hypothesis, and also in the framework of a thermoelasticity approach involving no dissipation of energy, as recently proposed by Green and Naghdi. The results are applied to the thermoelastic fracture problem. When the pseudomomentum equation is written in global form, for a fractured body, it provides path-domain invariant expressions for the thermoelastic energy-release rate.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 29 条
[1]  
Peieris R., Momentum and pseudomomentum of light and sound, Highlights of Condensed-matter Physics, pp. 237-255, (1979)
[2]  
Nelson D.F., Momentum, pseudomomentum and wave momentum: toward resolving the Minkowski-Abraham controversy, Phys. Rev. A, 44, pp. 3905-3916, (1991)
[3]  
Eshelby J.D., The force on an elastic singularity, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 244, pp. 87-112, (1951)
[4]  
Eshelby J.D., Energy relations and the energy-momentum tensor in continuum mechanics, Inelastic Behaviour of Solids, pp. 77-114, (1970)
[5]  
Rogula D., Forces in material space, Arch. Mech., 29, pp. 705-715, (1977)
[6]  
Maugin G.A., Sur la conservation de la pseudo-quantité de mouvement en mécanique et électrodynamique des milieux continus, C.R. Acad. Sci. Paris, 2-311, pp. 763-768, (1990)
[7]  
Maugin G.A., Trimarco C., Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture, Acta Mechanica, 94, pp. 1-28, (1992)
[8]  
Dascalu C., Maugin G.A., Forces matérielles et taux de restitution de l'énergie dans les corps élastiques homogènes avec défauts, C.R. Acad. Sci. Paris, 2-317, pp. 1135-1140, (1993)
[9]  
Maugin G.A., Material Inhomogeneities in Elasticity, (1993)
[10]  
Rice J.R., A path-independent integral and the approximate analysis of strain concentrations by notches and cracks, Journal of Applied Mechanics, 35, pp. 379-388, (1968)