1-D MAP FOR THE DOUBLE SCROLL FAMILY

被引:10
作者
CHUA, LO
TICHONICKY, I
机构
[1] ECOLE NATL SUPER AERONAUT & ESPACE,TOULOUSE,FRANCE
[2] UNIV CALIF BERKELEY,ELECTR RES LAB,BERKELEY,CA 94720
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS | 1991年 / 38卷 / 03期
关键词
Chua's Circuit - Double Scroll Family - Kneading Theory - Periodic Orbits - Poincare Map;
D O I
10.1109/31.101317
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We use the 1-D map pi* (an approximation of the 2-D Poincare map) defined in [3] to study the periodic windows of the Double Scroll family. First, using an algorithm based on the kneading theory, we determine the structure and the order of appearance of periodic orbits in the 1-D map pi*. With this information, we then find the structure and the period of the corresponding orbits of the 3-D system.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 8 条
[1]  
Chua L. O., 1987, LINEAR NONLINEAR CIR
[2]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[3]  
Collet P., 1980, ITERATED MAPS INTERV
[4]  
GUCKENHEIMER J, 1980, DYNAMICAL SYSTEMS, P115
[5]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[6]   BIFURCATIONS OF ONE-DIMENSIONAL AND TWO-DIMENSIONAL MAPS [J].
HOLMES, P ;
WHITLEY, D .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 311 (1515) :43-102
[7]   THE DOUBLE SCROLL [J].
MATSUMOTO, T ;
CHUA, LO ;
KOMURO, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (08) :797-818
[8]   SELF-SIMILAR BIFURCATION STRUCTURES FROM CHUAS CIRCUIT [J].
YANG, L ;
LIAO, Y .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1987, 15 (02) :189-192