TAYLOR AND PADE ANALYSIS OF THE LEVEL SPACING DISTRIBUTIONS OF RANDOM-MATRIX ENSEMBLES

被引:42
作者
DIETZ, B
HAAKE, F
机构
[1] Fachbereich Physik, Universität-GHS Essen, Essen 1, D-4300
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1990年 / 80卷 / 01期
关键词
D O I
10.1007/BF01390663
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We construct the distribution P(S) of nearest-neighbor level spacings for the orthogonal, unitary, and symplectic ensembles of (Hermitian and unitary) random matrices in the limit of large dimension. The Taylor expansion of P(S) around S=0 is given explicitly to arbitrarily high orders. By employing a diagonal Padé approximation we interpolate between the small-S behavior given by the Taylor expansion and the rigorously known asymptotic form at large S. © 1990 Springer-Verlag.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 4 条
  • [1] [Anonymous], 1967, RANDOM MATRICES
  • [2] FREDHOLM DETERMINANTS AND INVERSE SCATTERING PROBLEMS
    DYSON, FJ
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (02) : 171 - 183
  • [3] SYMMETRY VERSUS DEGREE OF LEVEL REPULSION FOR KICKED QUANTUM-SYSTEMS
    KUS, M
    SCHARF, R
    HAAKE, F
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 66 (01): : 129 - 134
  • [4] Mehta M.L., 1972, IND J PURE APPL MATH, V3, p329