ON THE OCCURRENCE OF QUASIPERIODIC MOTION ON 3 TORI

被引:19
作者
TAVAKOL, RK
TWORKOWSKI, AS
机构
关键词
D O I
10.1016/0375-9601(84)90661-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:65 / 67
页数:3
相关论文
共 13 条
[1]   CASCADE OF PERIOD DOUBLINGS OF TORI [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA .
PHYSICS LETTERS A, 1983, 94 (01) :1-6
[2]   GENERALIZED LORENTZ SYSTEM [J].
CURRY, JH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (03) :193-204
[3]   A 7-MODE TRUNCATION OF THE PLANE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
FRANCESCHINI, V ;
TEBALDI, C .
JOURNAL OF STATISTICAL PHYSICS, 1981, 25 (03) :397-417
[4]   SEQUENCES OF INFINITE BIFURCATIONS AND TURBULENCE IN A 5-MODE TRUNCATION OF THE NAVIER-STOKES EQUATIONS [J].
FRANCESCHINI, V ;
TEBALDI, C .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :707-726
[5]  
FRANCESCHINI V, 1983, PHYSICA D, V6, P73
[6]   ARE 3-FREQUENCY QUASI-PERIODIC ORBITS TO BE EXPECTED IN TYPICAL NON-LINEAR DYNAMICAL-SYSTEMS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 51 (05) :339-342
[7]   TRANSITION FROM TORUS TO CHAOS ACCOMPANIED BY FREQUENCY LOCKINGS WITH SYMMETRY-BREAKING - IN CONNECTION WITH THE COUPLED-LOGISTIC MAP [J].
KANEKO, K .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (05) :1427-1442
[8]  
Landau L.D., 2013, COURSE THE ORETICAL
[9]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[10]  
2