NEW CONSTRUCTION OF SOLVABLE LATTICE MODELS INCLUDING AN ISING-MODEL IN A FIELD

被引:76
作者
WARNAAR, SO
NIENHUIS, B
SEATON, KA
机构
[1] Instituut voor Theoretische Fysica, Universiteit van Amsterdam, 1018 XE Amsterdam
关键词
D O I
10.1103/PhysRevLett.69.710
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we report a new construction to obtain restricted solid-on-solid (RSOS) models out of loop models. The method is a generalization of ideas developed by Owczarek and Baxter, and by Pasquier. In particular we consider a solvable O(n) model and point out that some of the RSOS models thus obtained admit an off-critical extension. Among these models we find a spin-1 Ising model, which is solvable not only at the critical point, but also in a fieldlike deviation away from it. We calculate the critical exponent delta = 15 directly from the relation between the free energy and the field. This is the first determination of this exponent without the use of scaling relations.
引用
收藏
页码:710 / 712
页数:3
相关论文
共 18 条
[1]   8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES [J].
ANDREWS, GE ;
BAXTER, RJ ;
FORRESTER, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) :193-266
[2]   BETHE-ANSATZ RESULTS FOR A SOLVABLE O(N) MODEL ON THE SQUARE LATTICE [J].
BATCHELOR, MT ;
NIENHUIS, B ;
WARNAAR, SO .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2425-2428
[3]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[4]   EQUIVALENCE OF POTTS MODEL OR WHITNEY POLYNOMIAL WITH AN ICE-TYPE MODEL [J].
BAXTER, RJ ;
KELLAND, SB ;
WU, FY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03) :397-406
[6]   NON-CRITICAL ORBIFOLDS [J].
FENDLEY, P ;
GINSPARG, P .
NUCLEAR PHYSICS B, 1989, 324 (03) :549-580
[7]  
Gradshteyn I.S., 1965, TABLES OF INTEGRALS
[8]  
Kuniba A., COMMUNICATION
[9]  
KUNIBA A, 1987, J STAT PHYS, V52, P829
[10]  
NIENHUIS B, IN PRESS