THE concept of working memory is central to theories of human cognition because working memory is essential to such human skills as language comprehension and deductive reasoning1-4. Working memory is thought to be composed of two parts, a set of buffers that temporarily store information in either a phonological or visuospatial form, and a central executive responsible for various computations such as mental arithmetic5,6. Although most data on working memory come from behavioural studies of normal and brain-injured humans7, there is evidence about its physiological basis from invasive studies of monkeys8-10. Here we report positron emission tomography (PET) studies of regional cerebral blood flow in normal humans that reveal activation in right-hemisphere prefrontal, occipital, parietal and premotor cortices accompanying spatial working memory processes. These results begin to uncover the circuitry of a working memory system in humans.