ON THE LARGE-TIME ASYMPTOTICS OF THE DIFFUSION EQUATION ON INFINITE DOMAINS

被引:39
作者
KLOOSTERZIEL, RC [1 ]
机构
[1] STATE UNIV UTRECHT,INST METEOROL & OCEANOG,3584 CC UTRECHT,NETHERLANDS
关键词
D O I
10.1007/BF00058467
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is shown that expansions in similarity solutions provide a quick and economical method for assessing the large-time asymptotics of the diffusion equation on infinite and certain semi-infinite domains if Dirichlet or Neumann conditions are imposed. The similarity solutions are shown to form a basis for the Hilbert space {Mathematical expression}. This implies that initial conditions for the diffusion equation that are square integrable with respect to the exponentially-growing weight function {Mathematical expression} can be expanded in a discrete, infinite sum of mutually orthogonal similarity solutions, each having a different rate of amplitude decay. This leads to a rapid, almost effortless recognition of the large-time asymptotic behaviour of the solution. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:213 / 236
页数:24
相关论文
共 11 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
Batchelor C.K., 1967, INTRO FLUID DYNAMICS, V1st ed.
[3]  
Birkhoff G., 1950, HYDRODYNAMICS STUDY
[4]  
BLUMAN GW, 1974, APPL MATH SCI, V13
[5]  
Carslaw H. S., 1986, CONDUCTION HEAT SOLI
[6]  
Crank J., 1979, MATH DIFFUSION, V2nd
[7]  
HIGGINS JR, 1977, COMPLETENESS BASIC P
[8]  
KLOOSTERZIEL RC, 1990, UNPUB J FLUID MECH
[9]  
Moon P., 1988, FIELD THEORY HDB
[10]  
Morse P., 1953, METHODS THEORETICAL