NARROW-GAP INAS FOR HETEROSTRUCTURE TUNNELING

被引:9
作者
BERESFORD, R
LUO, LF
WANG, WI
机构
[1] Dept. of Electr. Eng., Columbia Univ., New York, NY
关键词
D O I
10.1088/0268-1242/5/3S/043
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent experiments show that narrow-gap semiconductors have significant advantages for potential device applications of electron tunnelling. As a result of the small electron effective mass in InAs, the authors can observe resonant tunnelling through a 24 nm quantum well, the longest coherence distance reported for double-barrier heterostructures. Another novel finding is that single-barrier tunnelling devices of InAs/AlGaSb/InAs exhibit negative differential conductance at room temperature owing to the favourable band alignment. The high electron mobility in InAs will lead to lower parasitic device resistances and improved high-frequency performance compared to devices based on GaAs. To compare the experimental results with theory, the two-band model of a narrow-gap semiconductor has been incorporated in the standard calculation of tunnelling current-voltage characteristics.
引用
收藏
页码:S195 / S199
页数:5
相关论文
共 26 条
[1]  
Tsu R, Esaki L, Appl. Phys. Lett., 22, 11, (1973)
[2]  
Chang LL, Esaki L, Tsu R, Appl. Phys. Lett., 24, 12, (1974)
[3]  
Jogai B, Wang KL, Appl. Phys. Lett., 46, 2, (1985)
[4]  
Capasso F, Kiehl RA, J. Appl. Phys., 58, 3, (1985)
[5]  
Bonnefoi AR, Chow DH, McGill TC, Appl. Phys. Lett., 47, 8, (1985)
[6]  
Luo LF, Beresford R, Wang WI, Appl. Phys. Lett., 53, 23, (1988)
[7]  
Goodhue WD, Sollner TCLG, Le HQ, Brown ER, Vojak BA, Appl. Phys. Lett., 49, (1988)
[8]  
Sai-Halasz GA, Tsu R, Esaki L, Appl. Phys. Lett., 30, 12, (1977)
[9]  
Chow DH, McGill TC, Appl. Phys. Lett., 48, 21, (1986)
[10]  
Chow DH, McGill TC, Sou IK, Faurie JP, Nieh CW, Appl. Phys. Lett., 52, 1, (1988)