COMPLETENESS OF WILSON LOOP FUNCTIONALS ON THE MODULI SPACE OF SL(2, C) AND SU(1, 1) CONNECTIONS

被引:8
作者
ASHTEKAR, A [1 ]
LEWANDOWSKI, J [1 ]
机构
[1] UNIV FLORIDA,DEPT PHYS,GAINESVILLE,FL 32611
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/10/6/002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The structure of the moduli spaces M := A/G of (all, not just flat) SL(2, C) and SU(1, 1) connections on an n-manifold is analysed. For any topology on the corresponding spaces A of all connections which satisfies the weak requirement of compatibility with the affine structure of A, the moduli space M is shown to be non-Hausdorff. It is then shown that the Wilson loop functionals-4.e. the traces of holonomies of connections around closed loops-are complete in the sense that they suffice to separate all separable points of M. The methods are general enough to allow the underlying n-manifold to be topologically non-trivial and for connections to be defined on non-trivial bundles. The results have implications for canonical quantum general relativity in four and three dimensions.
引用
收藏
页码:L69 / L74
页数:6
相关论文
共 15 条
[1]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[2]   2 + 1 QUANTUM-GRAVITY AS A TOY MODEL FOR THE 3 + 1 THEORY [J].
ASHTEKAR, A ;
HUSAIN, V ;
ROVELLI, C ;
SAMUEL, J ;
SMOLIN, L .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (10) :L185-L193
[3]  
ASHTEKAR A, 1993, IN PRESS INT J MOD D
[4]  
ASHTEKAR A, 1991, NONPERTURBATIVE CANO
[5]   A PURE SPIN-CONNECTION FORMULATION OF GRAVITY [J].
CAPOVILLA, R ;
DELL, J ;
JACOBSON, T .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (01) :59-73
[6]   SOME APPLICATIONS OF INFINITESIMAL-HOLONOMY GROUP TO PETROV CLASSIFICATION OF EINSTEIN SPACES [J].
GOLDBERG, JN ;
KERR, RP .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (03) :327-&
[7]   DEGENERACY IN LOOP VARIABLES [J].
GOLDBERG, JN ;
LEWANDOWSKI, J ;
STORNAIOLO, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (02) :377-402
[8]  
JACOBSON T, 1992, UMDGR92208 PREPR
[9]  
KOBAYASHI S, 1963, F DIFFERENTIAL GEOME, V1
[10]  
LEWANDOWSKI J, 1993, CLASSICAL QUANT GRAV, V10, P1