A FINITE ALGORITHM FOR SOLVING GENERAL QUADRATIC PROBLEMS

被引:29
作者
BOMZE, IM [1 ]
DANNINGER, G [1 ]
机构
[1] UNIV VIENNA,DEPT STAT OPERAT RES & COMP SCI,A-1010 VIENNA,AUSTRIA
关键词
COPOSITIVITY; GLOBAL OPTIMIZATION; INDEFINITE QUADRATIC PROBLEMS; PSEUDOCONVEXITY;
D O I
10.1007/BF01096531
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Here we propose a global optimization method for general, i.e. indefinite quadratic problems, which consist of maximizing a non-concave quadratic function over a polyhedron in n-dimensional Euclidean space. This algorithm is shown to be finite and exact in non-degenerate situations. The key procedure uses copositivity arguments to ensure escaping from inefficient local solutions. A similar approach is used to generate an improving feasible point, if the starting point is not the global solution, irrespective of whether or not this is a local solution. Also, definiteness properties of the quadratic objective function are irrelevant for this procedure. To increase efficiency of these methods, we employ pseudoconvexity arguments. Pseudoconvexity is related to copositivity in a way which might be helpful to check this property efficiently even beyond the scope of the cases considered here.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 17 条
[1]  
Bazaraa M. S., 1979, NONLINEAR PROGRAMMIN
[2]  
BOMZE IM, 1993, IN PRESS SIAM J OPTI, V3
[3]  
Borgwardt Karl Heinz, 1987, SIMPLEX METHOD PROBA
[4]  
Cottle R. W., 1970, P PRINC S MATH PROGR, P551
[5]  
Danninger G., 1990, Methods of Operations Research, V62, P45
[6]   ON COPOSITIVE MATRICES [J].
HADELER, KP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 49 (FEB) :79-89
[7]  
Hiriart-Urruty J.B., 1989, NONSMOOTH OPTIMIZATI, V43, P219, DOI [10.1007/978-1-4757-6019-4_13, DOI 10.1007/978-1-4757-6019-4_13]
[8]  
HIRIARTURRUTY JB, 1990, SEMINAR NUMERICAL AN
[9]  
HORST R, 1991, GLOBAL OPTIMIZATION
[10]   FINITE CRITERIA FOR CONDITIONAL DEFINITENESS OF QUADRATIC-FORMS [J].
MARTIN, DH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 39 (AUG) :9-21