PENALTY APPROXIMATION OF STOKES-FLOW

被引:48
作者
CAREY, GF
KRISHNAN, R
机构
关键词
D O I
10.1016/0045-7825(82)90133-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:169 / 206
页数:38
相关论文
共 25 条
[1]  
BABUSKA I, 1972, MATH F FINITE ELEMEN
[2]  
BERCOVIER M, 1978, RAIRO-ANAL NUMER-NUM, V12, P211
[3]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[4]   FINITE-ELEMENT FOR THE NUMERICAL-SOLUTION OF VISCOUS INCOMPRESSIBLE FLOWS [J].
BERCOVIER, M ;
ENGELMAN, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (02) :181-201
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]  
GARTLING DK, 1974, THESIS U TEXAS AUSTI
[7]  
GIRAULT V, 1979, LECTURE NOTES MATH, V749
[8]   MIXED FINITE-ELEMENT APPROXIMATION OF THE STOKES PROBLEM .1. CONVERGENCE OF THE APPROXIMATE SOLUTIONS [J].
GLOWINSKI, R ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :397-424
[9]   FINITE-ELEMENT ANALYSIS OF INCOMPRESSIBLE VISCOUS FLOWS BY THE PENALTY FUNCTION FORMULATION [J].
HUGHES, TJR ;
LIU, WK ;
BROOKS, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (01) :1-60
[10]  
JOHNSON C, 1979, ANAL SOME MIXED FINI