CRITICAL-POINTS OF 2-DIMENSIONAL BOOTSTRAP PERCOLATION-LIKE CELLULAR AUTOMATA

被引:40
作者
SCHONMANN, RH
机构
[1] Instituto de Matemática e Estatistica da Universidade de São Paulo, São Paulo, SP
关键词
bootstrap percolation; Cellular automata; critical points;
D O I
10.1007/BF01026574
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cellular automata in two dimensions that generalize the bootstrap percolation dynamics are considered, focusing on the threshold pc of the initial density for convergence to total occupancy to occur; these models are classified according to pc being 0, 1, or strictly between these extreme values. Explicit upper and lower bounds are provided in the third case. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:1239 / 1244
页数:6
相关论文
共 4 条
[1]   DIFFUSION PERCOLATION .1. INFINITE TIME LIMIT AND BOOTSTRAP PERCOLATION [J].
ADLER, J ;
AHARONY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (06) :1387-1404
[2]   SIMULATION OF A CELLULAR AUTOMAT WITH AN ORIENTED BOOTSTRAP RULE [J].
DUARTE, JAMS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1989, 157 (03) :1075-1079
[3]  
SCHONMANN RH, 1989, BEHAVIOR SOME CELLUL
[4]   PROOF OF STRALEY ARGUMENT FOR BOOTSTRAP PERCOLATION [J].
VANENTER, ACD .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) :943-945