Accessibility of solutions by Newton's method

被引:41
作者
Gutierrez, JM
Hernandez, MA
Salanova, MA
机构
关键词
nonlinear equation; Newton's method; Fixed Point Principle; convexity;
D O I
10.1080/00207169508804427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new conditions for the convergence of Newton's method in Banach spaces, in terms of the degree of logarithmic convexity. These conditions guarantee the convergence of Newton sequence in cases where the hypothesis of Kantorovich theorem are not verified, as we show in some examples.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 9 条
[1]  
Hernandez M. A., 1992, ZB RAD PRIROD MAT M, V22, P159
[2]   A FAMILY OF NEWTON TYPE ITERATIVE PROCESSES [J].
HERNANDEZ, MA ;
SALANOVA, MA .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 51 (3-4) :205-214
[3]  
Kantorovich LV, 1982, FUNCTIONAL ANAL
[4]  
Kreyszig E., 1978, INTRO FUNCTIONAL ANA
[5]   KANTOROVICH THEOREM WITH OPTIMAL ERROR BOUNDS [J].
MIEL, GJ .
AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (03) :212-215
[6]  
Ostrowski A.M., 1943, SOLUTION EQUATIONS E
[7]  
RALL LB, 1961, REND CIRC MAT PALERM, V0010, P00314
[8]  
Rall LB., 1979, COMPUTATIONAL SOLUTI
[9]   A METHOD FOR FINDING SHARP ERROR-BOUNDS FOR NEWTON METHOD UNDER THE KANTOROVICH ASSUMPTIONS [J].
YAMAMOTO, T .
NUMERISCHE MATHEMATIK, 1986, 49 (2-3) :203-220