UNIVERSAL ESTIMATE OF THE GAP FOR THE KAC OPERATOR IN THE CONVEX CASE

被引:4
作者
HELFFER, B
机构
[1] URA CNRS 762 DMI-ENS, Paris Cédex, F-75230, 45, rue d'Ulm
关键词
D O I
10.1007/BF02101935
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this paper is to prove that if V is a strictly convex potential with quadratic behavior at infinity, then the quotient mu2/mu1 between the largest eigenvalue and the second eigenvalue of the Kac operator defined on L2(R(m)) by exp - V(x)/2.expDELTA(x).exp - V(x)/2, where DELTA(x) is the Laplacian on R(m) satisfies the condition: mu2/mu1 less-than-or-equal-to exp - cosh-1(sigma + 1)/2, where sigma is such that Hess V(x) greater-than-or-equal-to sigma > 0.
引用
收藏
页码:631 / 643
页数:13
相关论文
共 24 条
[1]  
BRASCAMP HJ, 1976, J FUNCT ANAL, V22
[2]  
BRUNAUD M, 1991, PROBLEME DOUBLE PUIT
[3]  
GLIMM J, QUANTUM PHYSICS
[4]   MULTIPLE WELLS IN THE SEMI-CLASSICAL LIMIT I [J].
HELFFER, B ;
SJOSTRAND, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) :337-408
[5]  
HELFFER B, 1992, HELV PHYS ACTA, V65, P748
[6]  
HELFFER B, 1992, ASTERISQUE, V210, P135
[7]  
HELFFER B, 1992, OPERATOR THEORY ADV, V57
[8]  
HELFFER B, 1993, ESTIMATIONS FONCTION
[9]  
HELFFER B, IN PRESS J FUNCT ANA
[10]  
HELFFER B, 1992, 9 I MITT LEFFL REP