TRIPLE SUMS AND THE RIEMANN ZETA-FUNCTION

被引:48
作者
MARKETT, C [1 ]
机构
[1] RHEIN WESTFAL TH AACHEN, LEHRSTUHL MATH A, W-5100 AACHEN, GERMANY
关键词
D O I
10.1006/jnth.1994.1058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a natural counterpart of classical double sum identities due to Euler, N. Nielsen, Ramanujan, and others, various relations between triple sums of the form [GRAPHICS] are here established. Among others, they may be used to derive explicit representations of these series in terms of the Riemann zeta function and products of it. The matter is carried out in detail for the cases p greater-than-or-equal-to 2, q = r = 1 as well as p + q + r less-than-or-equal-to 6. (C) 1994 Academic Press, Inc.
引用
收藏
页码:113 / 132
页数:20
相关论文
共 19 条
[1]  
Berndt B.C., 1985, RAMANUJANS NOTEBOOKS, P135
[2]  
Beukers F., 1979, B LOND MATH SOC, V11, P268, DOI [10.1112/blms/11.3.268, DOI 10.1112/BLMS/11.3.268]
[3]   CENTRAL FACTORIAL NUMBERS - THEIR MAIN PROPERTIES AND SOME APPLICATIONS [J].
BUTZER, PL ;
SCHMIDT, M ;
STARK, EL ;
VOGT, L .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (5-6) :419-488
[4]  
BUTZER PL, 1992, C MATH SOC JANOS BOL, V58, P127
[5]  
COHEN H, 1981, B SOC MATH FR, V109, P269
[6]  
GEORGHIOU C, 1983, FIBONACCI QUART, V21, P29
[7]  
KNOPP K, 1918, ARCH MATH PHYS, V27, P174
[8]  
Koecher M., 1979, MATH INTELLIGENCER, V2, P62
[9]   SOME NEW IDENTITIES FOR ZETA-(K) [J].
LESHCHINER, D .
JOURNAL OF NUMBER THEORY, 1981, 13 (03) :355-362
[10]  
LEWIN L, 1981, HDB THEORIE GAMMAFUN