学术探索
学术期刊
新闻热点
数据分析
智能评审
立即登录
HYDRODYNAMIC LIMIT FOR A SYSTEM WITH FINITE-RANGE INTERACTIONS
被引:27
作者
:
REZAKHANLOU, F
论文数:
0
引用数:
0
h-index:
0
机构:
Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY
REZAKHANLOU, F
机构
:
[1]
Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY
来源
:
COMMUNICATIONS IN MATHEMATICAL PHYSICS
|
1990年
/ 129卷
/ 03期
关键词
:
D O I
:
10.1007/BF02097101
中图分类号
:
O4 [物理学];
学科分类号
:
0702 ;
摘要
:
We study a system of interacting diffusions. The variables present the amount of charge at various sites of a periodic multidimensional lattice. The equilibrium states of the diffusion are canonical Gibbs measures of a given finite range interaction. Under an appropriate scaling of lattice spacing and time, we derive the hydrodynamic limit for the evolution of the macroscopic charge density. © 1990 Springer-Verlag.
引用
收藏
页码:445 / 480
页数:36
相关论文
共 5 条
[1]
ON THE HYDRODYNAMIC LIMIT OF A GINZBURG-LANDAU LATTICE MODEL - THE LAW OF LARGE NUMBERS IN ARBITRARY DIMENSIONS
[J].
FRITZ, J
论文数:
0
引用数:
0
h-index:
0
FRITZ, J
.
PROBABILITY THEORY AND RELATED FIELDS,
1989,
81
(02)
:291
-318
[2]
NONLINEAR DIFFUSION LIMIT FOR A SYSTEM WITH NEAREST NEIGHBOR INTERACTIONS
[J].
GUO, MZ
论文数:
0
引用数:
0
h-index:
0
机构:
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
GUO, MZ
;
PAPANICOLAOU, GC
论文数:
0
引用数:
0
h-index:
0
机构:
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
PAPANICOLAOU, GC
;
VARADHAN, SRS
论文数:
0
引用数:
0
h-index:
0
机构:
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
VARADHAN, SRS
.
COMMUNICATIONS IN MATHEMATICAL PHYSICS,
1988,
118
(01)
:31
-59
[3]
LARGE DEVIATIONS FOR GIBBS RANDOM-FIELDS
[J].
OLLA, S
论文数:
0
引用数:
0
h-index:
0
机构:
RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
OLLA, S
.
PROBABILITY THEORY AND RELATED FIELDS,
1988,
77
(03)
:343
-357
[4]
Spohn H., 1985, Statistical Physics and Dynamical Systems: Rigorous Results, P67
[5]
ASYMPTOTIC PROBABILITIES AND DIFFERENTIAL EQUATIONS
[J].
VARADHAN, SR
论文数:
0
引用数:
0
h-index:
0
VARADHAN, SR
.
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS,
1966,
19
(03)
:261
-&
←
1
→
共 5 条
[1]
ON THE HYDRODYNAMIC LIMIT OF A GINZBURG-LANDAU LATTICE MODEL - THE LAW OF LARGE NUMBERS IN ARBITRARY DIMENSIONS
[J].
FRITZ, J
论文数:
0
引用数:
0
h-index:
0
FRITZ, J
.
PROBABILITY THEORY AND RELATED FIELDS,
1989,
81
(02)
:291
-318
[2]
NONLINEAR DIFFUSION LIMIT FOR A SYSTEM WITH NEAREST NEIGHBOR INTERACTIONS
[J].
GUO, MZ
论文数:
0
引用数:
0
h-index:
0
机构:
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
GUO, MZ
;
PAPANICOLAOU, GC
论文数:
0
引用数:
0
h-index:
0
机构:
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
PAPANICOLAOU, GC
;
VARADHAN, SRS
论文数:
0
引用数:
0
h-index:
0
机构:
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
VARADHAN, SRS
.
COMMUNICATIONS IN MATHEMATICAL PHYSICS,
1988,
118
(01)
:31
-59
[3]
LARGE DEVIATIONS FOR GIBBS RANDOM-FIELDS
[J].
OLLA, S
论文数:
0
引用数:
0
h-index:
0
机构:
RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
OLLA, S
.
PROBABILITY THEORY AND RELATED FIELDS,
1988,
77
(03)
:343
-357
[4]
Spohn H., 1985, Statistical Physics and Dynamical Systems: Rigorous Results, P67
[5]
ASYMPTOTIC PROBABILITIES AND DIFFERENTIAL EQUATIONS
[J].
VARADHAN, SR
论文数:
0
引用数:
0
h-index:
0
VARADHAN, SR
.
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS,
1966,
19
(03)
:261
-&
←
1
→