HAMILTONIAN-FORMALISM OF WHITHAM-TYPE HIERARCHIES AND TOPOLOGICAL LANDAU-GINSBURG MODELS

被引:101
作者
DUBROVIN, BA [1 ]
机构
[1] MV LOMONOSOV STATE UNIV,DEPT MECH & MATH,MOSCOW 119899,USSR
关键词
D O I
10.1007/BF02099286
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the bi-hamiltonian structure of the averaged Gelfand-Dikii hierarchy is involved in the Landau-Ginsburg topological models (for A(n)-Series): the Casimirs for the first P.B. give the correct coupling parameters for the perturbed topological minimal model; the correspondence {coupling parameters} --> {primary fields} is determined by the second P.B. The partition function (at the tree level) and the chiral algebra for LG models are calculated for any genus g.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 28 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]   ON A SET OF EQUATIONS CHARACTERIZING RIEMANN MATRICES [J].
ARBARELLO, E ;
DECONCINI, C .
ANNALS OF MATHEMATICS, 1984, 120 (01) :119-140
[3]  
Balinskii A.A., 1985, SOV MATH DOKL, V32, P228
[4]  
BLOK B, IASSNSHEP915 PREPR
[5]  
Curtis C.W., 1962, REPRESENTATION THEOR
[6]  
DIJKGRAAF R, PUPT1204 PRINC PREPR
[7]  
Dobrokhotov S.Yu., 1982, SOV SCI REV MATH PHY, V3, P221
[8]  
DUBROVIN B, 1990, FUNCT ANAL APPL, V24
[9]  
DUBROVIN B, 1991, 117 SCUOL NORM SUP P
[10]  
DUBROVIN B, 1981, MATH USSR IZV, V19, P2