A SPECIAL LAGRANGE METRIC IN PARTICLE MECHANICS

被引:3
作者
AGOP, M [1 ]
DARIESCU, C [1 ]
DARIESCU, MA [1 ]
TATOMIR, D [1 ]
机构
[1] UNIV IASI,DEPT THEORET PHYS,R-6600 IASI,ROMANIA
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1995年 / 110卷 / 04期
关键词
04.20.Fy; 04.90; Canonical formalism; Lagrangians and variational principles; Other topics in relativity and gravitation;
D O I
10.1007/BF02741444
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new mechanical model with two direction-dependent interaction constants is built using the Lagrange metric g(ij)(x, y) = h(ij)(x) + alpha(1-1/n(2))y(i)y(j) with ''the gravitational index of refraction'' n = 1 + 2GM/(c(2)r) + r(2)/(cT)(2). For a particular set of coordinates, the Newton constant is found to be direction and epoch dependent.
引用
收藏
页码:371 / 375
页数:5
相关论文
共 14 条
[1]  
ALLAIS MFC, 1959, SHOULD LAWS GRAVITAT
[2]  
Asanov GS., 1985, FINSLER GEOMETRY REL
[3]  
ASANOV GS, 1990, TENSOR, V49, P99
[4]  
Bejancu A., 1986, GEOMETRY CR SUBMANIF
[5]  
Bejancu A., 1990, FINSLER GEOMETRY APP
[6]  
FOCK VA, 1962, THEORIA SPATIULUI SI
[7]  
HAFNER H, 1972, THESIS U CLUJ ROMANI
[8]   ON THE INTRINSIC BEHAVIOR OF THE INTERNAL VARIABLE IN THE FINSLERIAN GRAVITATIONAL-FIELD [J].
IKEDA, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (05) :958-960
[9]  
IKEDA S, 1987, FIBRATE VECTORIALE S, P186
[10]  
IONESCUPALLAS N, 1980, RELATIVITATE GENERAL