THE BILLIARD ALGORITHM AND KS ENTROPY

被引:7
作者
BALDWIN, PR
机构
[1] Dept. of Phys., Akron Univ., OH
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 16期
关键词
D O I
10.1088/0305-4470/24/16/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There is known to be a close relation between the Kolmogorov-Sinai entropy (sum of the positive Lyapunov exponents) of an ergodic dynamical system and the algorithmic complexity of encoding trajectories of the system with respect to some partition. In this letter, we explicitly give an encoding which demonstrates this relation for the square Sinai billiard. The encoding depends on the fact that the collision criterion for the billiard is an example of rational approximants. The method may be used to achieve very fast simulation times for the system.
引用
收藏
页码:L941 / L947
页数:7
相关论文
共 15 条
[1]  
BALDWIN PR, 1988, PHYSICA D, V29, P31
[2]   NUMERICAL STUDY OF A D-DIMENSIONAL PERIODIC LORENTZ GAS WITH UNIVERSAL PROPERTIES [J].
BOUCHAUD, JP ;
LEDOUSSAL, P .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (1-2) :225-248
[3]  
Brudno A., 1983, T MOSC MATH SOC, V2, P127
[4]   UNIVERSAL BEHAVIOR OF SINAI BILLIARD SYSTEMS IN THE SMALL-SCATTERER LIMIT [J].
FRIEDMAN, B ;
OONO, Y ;
KUBO, I .
PHYSICAL REVIEW LETTERS, 1984, 52 (09) :709-712
[5]  
FRIEDMAN BA, 1991, UNPUB
[6]  
GASPARD P, 1990, PHYS REV LETT, V65, P1963
[7]  
GRASSBERGER, 1988, Z NATURFORSCH A, V43, P671
[8]  
GRASSBERGER P, 1989, HELV PHYS ACTA, V62, P489
[9]  
HAUGE EH, 1974, LECTURE NOTES PHYSIC, V31, P338
[10]   LOGICAL BASIS FOR INFORMATION THEORY AND PROBABILITY THEORY [J].
KOLMOGOROV, AN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (05) :662-+